首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of the EcoRi and other restriction endonucleases.   总被引:6,自引:0,他引:6       下载免费PDF全文
The reaction of the EcoRI restriction endonuclease was studied with both the plasmid pMB9 and DNA from bacteriophage lambda as the substrates. With both circular and linear DNA molecules, the only reaction catalysed by the EcoRI restriction endonuclease was the hydrolysis of the phosphodiester bond within one strand of the recognition site on the DNA duplex. The cleavage of both strands of the duplex was achieved only after two independent reactions, each involving a single-strand scission. The reactivity of the enzyme for single-strand scissions was the same for both the first and the second cleavage within its recognition site. No differences were observed between the mechanism of action on supercoiled and linear DNA substrates. Other restriction endonucleases were tested against plasmid pMB9. The HindIII restriction endonuclease cleaved DNA in the same manner as the EcoRI enzyme. However, in contrast with EcoRI, the Sa/I and the BamHI restriction endonucleases appeared to cleave both strands of the DNA duplex almost simultaneously. The function of symmetrical DNA sequences and the conformation of the DNA involved in these DNA--protein interactions are discussed in the light of these observations. The fact that the same reactions were observed on both supercoiled and linear DNA substrates implies that these interactions do not involve the unwinding of the duplex before catalysis.  相似文献   

2.
The SalGI restriction endonuclease. Enzyme specificity.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have analysed the kinetics of DNA cleavage in the reaction between the SalGI restriction endonuclease and plasmid pMB9. This reaction is subject to competitive inhibition by DNA sequences outside the SalGI recognition site; we have determined the Km and Vmax. for the reaction of this enzyme at its recognition site and the KI for its interaction at other DNA sequences. We conclude that the specificity of DNA cleavage by the enzyme is only partly determined by the discrimination it shows for binding at its recognition sequence compared with binding to other DNA sequences.  相似文献   

3.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

4.
The SalGI restriction endonuclease. Purification and properties   总被引:4,自引:2,他引:2       下载免费PDF全文
The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of M(r) about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined.  相似文献   

5.
The reactions of the EcoRI restriction endonuclease on the covalently closed DNA of plasmid pMB9 were studied in the presence of ethidium bromide. At the concentrations of ethidium bromide tested, which covered the range over which the DNA is changed from negatively to positively supercoiled, the dye caused no alteration to the rate at which this enzyme cleaved the covalently closed DNA to yield the open-circle form, but the rate at which these open circles were cleaved to the linear product could be inhibited. The fluorescence change, caused by ethidium bromide binding with different stoichiometries to covalently closed and open-circle DNA, provided a direct and sensitive signal for monitoring the cleavage of DNA by this enzyme. This method was used for a steady-state kinetic analysis of the reaction catalysed by the EcoRI restriction enzyme. Reaction mechanisms where a complex between DNA and Mg2+ is the substrate for this enzyme were eliminated, and instead DNA and Mg2+ must bind to the enzyme in separate stages. The requisite controls for this fluorimetric assay in both steady-state and transient kinetics studies, and its application to other enzymes that alter the structure of covalently closed DNA, are described.  相似文献   

6.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   

7.
The kinetics of the reactions of the EcoRI restriction endonuclease at individual recognition sites on the DNA from bacteriophage lambda were found to differ markedly from site to site. Under certain conditions of pH and ionic strength, the rates for the cleavage of the DNA were the same at each recognition site. But under altered experimental conditions, different reaction rates were observed at each recognition site. These results are consistent with a mechanism in which the kinetic stability of the complex between the enzyme and the recognition site on the DNA differs among the sites, due to the effect of interactions between the enzyme and DNA sequences surrounding each recognition site upon the transition state of the reaction. Reactions at individual sites on a DNA molecule containing more than one recognition site were found to be independent of each other, thus excluding the possibility of a processive mechanism for the EcoRI enzyme. The consequences of these observations are discussed with regard to both DNA-protein interactions and to the application of restriction enzymes in the study of the structure of DNA molecules.  相似文献   

8.
Type IIs endonucleases recognize asymmetric DNA sequences and cleave both strands at fixed positions downstream of the sequence. Many type IIs enzymes, including BspMI, cleave substrates with two sites more rapidly than those with one site. They usually act sequentially on DNA with two sites, but BspMI converted such a substrate directly to the final products cut at both sites. The BspMI endonuclease was found to be a tetramer, in contrast to the monomeric structures for many type IIs enzymes. No change in subunit association occurred during the BspMI reaction. Plasmids with two BspMI sites were cleaved in cis, in reactions spanning sites in the same DNA, even when the sites were separated by just 38 bp. Plasmids with one BspMI site were cleaved in trans, with the enzyme bridging sites in separate DNA molecules: these slow reactions could be accelerated by adding a second DNA with the recognition sequence. Thus, whereas many type IIs enzymes dimerize before cleaving DNA, a process facilitated by two recognition sites in cis, the BspMI tetramer binds two copies of its recognition sequence before cleaving the DNA in both strands at both sites.  相似文献   

9.
Type II restriction endonucleases usually recognize 4-6-base pair (bp) sites on DNA and cleave each site in a separate reaction. A few type II endonucleases have 8-bp recognition sites, but these seem unsuited for restriction, since their sites are rare on most DNA. Moreover, only one endonuclease that recognizes a target containing 8 bp has been examined to date, and this enzyme, SfiI, needs two copies of this site for its DNA cleavage reaction. In this study, several endonucleases with 8-bp sites were tested on plasmids that have either one or two copies of the relevant sequence to determine if they also need two sites. SgfI, SrfI, FseI, PacI, PmeI, Sse8781I, and SdaI all acted through equal and independent reactions at each site. AscI cleaved the DNA with one site at the same rate as that with two sites but acted processively on the latter. In contrast, SgrAI showed a marked preference for the plasmid with two sites and cleaved both sites on this DNA in a concerted manner, like SfiI. Endonucleases that require two copies of an 8-bp sequence may be widespread in nature, where, despite this seemingly inappropriate requirement, they may function in DNA restriction.  相似文献   

10.
Type IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence. To examine this possibility, several type IIs enzymes were tested against substrates with either one or two target sites. Some of the enzymes cleaved the DNA with two target sites at the same rate as that with one site, but most cut their two-site substrate more rapidly than the one-site DNA. In some cases, the two sites were cut sequentially, at rates that were equal to each other but that exceeded the rate on the one-site DNA. In another case, the DNA with two sites was cleaved rapidly at one site, but the residual site was cleaved at a much slower rate. In a further example, the two sites were cleaved concertedly to give directly the final products cut at both sites. Many type IIs enzymes thus interact with two copies of their recognition sequence before cleaving DNA, although via several different mechanisms.  相似文献   

11.
Discrimination between DNA sequences by the EcoRV restriction endonuclease   总被引:10,自引:0,他引:10  
J D Taylor  S E Halford 《Biochemistry》1989,28(15):6198-6207
The EcoRV restriction endonuclease cleaves not only its recognition sequence on DNA, GATATC, but also, at vastly reduced rates, a number of alternative DNA sequences. The plasmid pAT153 contains 12 alternative sites, each of which differs from the recognition sequence by one base pair. The EcoRV nuclease showed a marked preference for one particular site from among these alternatives. This noncognate site was located at the sequence GTTATC, and the mechanism of action of EcoRV at this site was analyzed. The mechanism differed from that at the cognate site in three respects. First, the affinity of the enzyme for the noncognate site was lower than that for the cognate site, but, by itself, this cannot account for the specificity of EcoRV as measured from the values of kcat/Km. Second, the enzyme had a lower affinity for Mg2+ when it was bound to the noncognate site than when it was bound to its cognate site: this appears to be a key factor in limiting the rates of DNA cleavage at alternative sites. Third, the reaction pathway at the noncognate site differed from that at the cognate site. At the former, the EcoRV enzyme cleaved first one strand of the DNA and then the other while at the latter, both strands were cut in one concerted reaction. The difference in reaction pathway allows DNA ligase to proofread the activity of EcoRV by selective repair of single-strand breaks at noncognate sites, as opposed to double-strand breaks at the cognate site. The addition of DNA ligase to reactions with EcoRV made no difference to product formation at the cognate site, but products from reactions at noncognate sites were no longer detected.  相似文献   

12.
A set of DNA duplexes with repeated EcoRII, EcoRI and AluI restriction endonuclease recognition sites in which EcoRII scissile phosphodiester bonds were replaced by phosphoramide or uncleavable pyrophosphate bonds have been synthesized. Endonuclease EcoRII was found not to cleave the substrate at the phosphoramide bond. The substrates containing non-nydrolysable pyrophosphate or phosphoramide bonds in one of the chains of EcoRII recognition sites were used to show that this enzyme is able to catalyze single-strand scissions. These scissions occur both in dA- and dT-containing chains of the recognition site. Endonuclease EcoRII interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of the other. Synthesized DNA-duplexes are cleaved specifically by EcoRI and AluI endonucleases, this cleavage being retarded if the modified bonds are in the recognition site (EcoRI) or flank it (AluI). For EcoRII and AluI this effect is more pronounced in the case of substrates with pyrophosphate bonds than with the phosphoramide ones.  相似文献   

13.
In common with a number of other DNA junction-resolving enzymes, endonuclease VII of bacteriophage T4 binds to a four-way DNA junction as a dimer, and cleaves two strands of the junction. We have used a supercoil-stabilized cruciform substrate to probe the simultaneity of cleavage at the two sites. Active endonuclease VII converts the supercoiled circular DNA directly into linear product, indicating that the two cleavage reactions must occur within the lifetime of the protein-junction complex. By contrast, a heterodimer of active enzyme and an inactive mutant endonuclease VII leads to the formation of nicked circular product, showing that the subunits operate fully independently.  相似文献   

14.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

15.
The purine analog, 2-chloro-2'-deoxyadenosine triphosphate (CldATP), was incorporated enzymatically in place of dATP into the minus strand of M13mp18 duplex DNA. Its effect on protein-DNA interactions was assessed by determining the amount of DNA cleavage by type II restriction endonucleases. Substitution of chloroadenine (CIAde) for adenine (Ade) in DNA appreciably decreased the amount and rate of DNA cleavage of the minus strand when the analog was situated within the appropriate endonuclease recognition site. CIAde residues flanking a restriction site had variable effects. SmaI cleaved both CIAde-containing and control substrates with equal efficiency. NarI, however, was stimulated 1.5-fold by the presence of CIAde outside its recognition site. The effects of analog incorporation on restriction enzyme cleavage of an opposing unsubstituted strand of duplex DNA was examined by enzymatically incorporating CIdATP into the complementary minus strand of a 36-base oligonucleotide. Endonucleolytic cleavage of both plus and minus strands was reduced on 36-mers containing CIAde residues located within only the minus strand. These data suggest that CIAde residues incorporated into a single DNA strand may have an appreciable effect on DNA-protein interactions that involve one or both strands of duplex DNA.  相似文献   

16.
The SfiI restriction endonuclease is a tetramer in which two subunits form a dimeric unit that contains one DNA binding cleft and the other two subunits contain a second cleft on the opposite side of the protein. Full activity requires both clefts to be filled with its recognition sequence: SfiI has low activity when bound to one site. The ability of SfiI to cleave non-cognate sites, one base pair different from the true site, was initially tested on substrates that lacked specific sites but which contained either one or multiple non-cognate sites. No cleavage of the DNA with one non-cognate site was detected, while a small fraction of the DNA with multiple sites was nicked. The alternative sequences were, however, cleaved in both strands, albeit at low levels, when the DNA also carried either a recognition site for SfiI or the termini generated by SfiI. Further tests employed a mutant of SfiI, altered at the dimer interface, which was known to be more active than wild-type SfiI when bound to a single site. This mutant similarly failed to cleave DNA with one non-cognate site, but cleaved the substrates with multiple non-cognate sites more readily than did the native enzyme. To cleave additional sites, SfiI thus needs to interact concurrently with either two non-cognate sites or one non-cognate and one cognate site (or the termini thereof), yet this arrangement is still restrained from cleaving the alternative site unless the communication pathway between the two DNA-binding clefts is disrupted.  相似文献   

17.
The EcoRV restriction endonuclease cleaves DNA not only at its recognition sequence but also at most other sequences that differ from the recognition site by one base pair. Compared to the reaction at the recognition site, the reactions at noncognate sites are slow but 1 out of the 12 noncognate sites on the plasmid pAT153 is cleaved more than 50 times faster than any other. The increase in the reaction rate at the preferred noncognate site, relative to other sites, was caused by the DNA sequences in the 4 base pairs from either side of the site. For enhanced activity by EcoRV, particular bases were needed immediately adjacent to the site, inside the DNA-protein complex. At these loci, the protein interacts with the phosphate groups in the DNA and the flanking sequence may control the activity of the enzyme by determining the conformation of the DNA, thus aligning the phosphate contacts. But the preferential cleavage also depended on sequences further away from the site, at loci outside the complex. At external positions, beyond the reach of the protein, the EcoRV enzyme required flanking sequences that give rise to flexibility in DNA conformation. These may facilitate the distortion of the DNA required for catalysis by EcoRV.  相似文献   

18.
Studies on the specificity of the ATP-dependent DNase of Bacillus subtilis 168, carried out with pure enzyme at the optimal conditions for its action, have shown that the substrate is double-stranded linear DNA. Linear single-stranded DNA (separated strands of B. subtilis DNA and linear phage fd DNA) is not attacked, neither are there any circular forms (supercoiled or nicked simian virus 40 and circular single-stranded fd DNAs). The double-stranded DNA can be completely hydrolysed, the limit products being, almost exclusively, mononucleotides. The presence of terminal phosphate residues in the substrate (either at the 3' or the 5' end) is not necessary for enzyme action. This DNase appears therefore to be an exonuclease processively liberating mononucleotides from both strands of the native linear DNA. ATP (indispensable for the DNase reaction) is also hydrolysed by the enzyme, to ADP and inorganic orthophosphate (Pi) in the presence of DNA. The apparent Km for ATP, in the ATPase reaction, is 0.15 mM. At high ATP concentrations, which inhibit the DNase activity, there is activation of the ATPase reaction. Three molecules of ATP are consumed for each DNA phosphodiester bond split, at optimal conditions for DNase activity.  相似文献   

19.
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.  相似文献   

20.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号