首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ginkgo biloba has long been used in traditional Chinese medicine. In this study, ginkgoneolic acid, a kind of compound extracted from G. biloba, was investigated for its effects on growth, acid production, adherence, biofilm formation, and biofilm morphology of Streptococcus mutans. The results showed that ginkgoneolic acid inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC50?=?4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 % or more at low concentration (MBRC50?=?32 μg/mL). Furthermore, the present study demonstrated that ginkgoneolic acid disrupted biofilm integrity effectively. These findings suggest that ginkgoneolic acid is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity.  相似文献   

2.
Dental caries and periodontitis are common bacterial mouth infections. As a potentially attractive substitute for conventional antibiotics, antimicrobial peptides have been widely tested and used for controlling bacterial infections. In this study, we tested the efficacy of the peptides from the skin secretions of Rana chensinensis for killing several major cariogenic and periodontic pathogens as well as Candida albicans. L-K6, a temporin-1CEb analog, exhibited high antimicrobial activity against the tested oral pathogens and was able to inhibit Streptococcus mutans biofilm formation and reduce 1-day-old S. mutans biofilms with a minimum biofilm inhibitory concentration and reducing concentration of 3.13 and 6.25 μM, respectively. The results of confocal laser scanning microscopy demonstrated that the peptide significantly reduced cell viability within oral biofilms. Furthermore, as little as 5 μM L-K6 significantly inhibited lipopolysaccharide (LPS)- and interleukin-1β-induced productions of interleukin-8 and tumor necrosis factor-α from THP-1 monocytic cells. This anti-inflammatory activity is associated with the binding of L-K6 to LPS and neutralizing LPS-induced proinflammatory responses in THP-1 cells, as well as dissociating LPS aggregates. Our results suggest that L-K6 may have potential clinical applications in treating dental caries by killing S. mutans within dental plaque and acting as anti-inflammatory agents in infected tissues.  相似文献   

3.
The present study examined the influences of the neovestitol–vestitol (NV) containing fraction isolated from Brazilian red propolis on the development of biofilm and expression of virulence factors by Streptococcus mutans using saliva-coated surfaces of hydroxyapatite. In addition, NV was tested in a rodent model of dental caries to assess its potential effectiveness in vivo. Topical applications of NV (800 μg ml?1) significantly impaired the accumulation of biofilms of S. mutans by largely disrupting the synthesis of glucosyltransferase-derived exopolysaccharides and the expression of genes associated with the adaptive stress response, such as copYAZ and sloA. Of even greater impact, NV was as effective as fluoride (positive control) in reducing the development of carious lesions in vivo. NV is a promising natural anti-biofilm agent that targets essential virulence traits in S. mutans, which are associated with the formation of cariogenic biofilm and the subsequent onset of dental caries disease.  相似文献   

4.
Streptococcus mutans is a bacterium found in human oral biofilms (dental plaques) that is associated with the development of dental caries. Glucosyltransferases (GTFs) are key enzymes involved in dental plaque formation, and compounds that inhibit their activities may prevent dental caries. We developed a screening system for GTF-inhibitory activities, and used it to profile 44 types of herbal tea extracts. Lemon myrtle (Backhousia citriodora) extract exhibited the highest GTF-inhibitory activity, with an IC50 for GTF in solution of 0.14 mg mL?1. Furthermore, lemon myrtle extracts had the third-highest polyphenol content of all tested extracts, and strongly inhibited S. mutans biofilm. Interestingly, lemon myrtle extracts did not inhibit cell growth.  相似文献   

5.
Dental caries is a common oral bacterial infectious disease. Its prevention and treatment requires control of the causative pathogens within dental plaque, especially Streptococcus mutans (S. mutans). Antimicrobial peptides (AMPs), one of the promising substitutes for conventional antibiotics, have been widely tested and used for controlling bacterial infections. The present study focuses on evaluating the potential of the novel AMPs cyclic bactenecin and its derivatives against bacteria associated with dental caries. The results indicate that Bac8c displayed highest activity against the bacteria tested, whereas both cyclic and linear bactenecin had weak antimicrobial activity. The cytotoxicity assay showed that Bac8c did not cause detectable toxicity at concentrations of 32–128 μg/ml for 5 min or 32–64 μg/ml for 60 min. S. mutans and Lactobacillus fermenti treated with Bac8c showed variable effects on bacterial structure via scanning electron microscopy and transmission electron microscopy. There appeared to be a large amount of extracellular debris and obvious holes on the cell surface, as well as loss of cell wall and nucleoid condensation. The BioFlux system was employed to generate S. mutans biofilms under a controlled flow, which more closely resemble the formation process of natural biofilms. Bac8c remarkably reduced the viability of cells in biofilms formed in the BioFlux system. This phenomenon was further analyzed and verified by real-time PCR results of a significant suppression of the genes involved in S. mutans biofilm formation. Taken together, this study suggests that Bac8c has a potential clinical application in preventing and treating dental caries.  相似文献   

6.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

7.
Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose‐ and time‐dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5–500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9‐22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries.  相似文献   

8.
Streptococcus mutans is the etiologic agent of dental caries and is a causative agent of infective endocarditis. While the mechanisms by which S. mutans cells colonize heart tissue is not clear, it is thought that bacterial binding to extracellular matrix and blood conponents is crucial in the development of endocarditis. Previously, we have demonstrated that S. mutans cells have the capacity to bind and activate plasminogen to plasmin. Here we report the first cloning and characterization of an α-enolase of S. mutans that binds plasminogen. The functional identity of the purified recombinant α-enolase protein was confirmed by its ability to catalyze the conversion of 2-phosphoglycerate to phosphoenolpyruvate. The protein exhibited a Km of 9.5 mM and a Vmax of 31.0 mM/min/mg. The α-enolase protein was localized in the cytoplasmic, cell wall and extracellular fractions of S. mutans. Binding studies using an immunoblot analysis revealed that human plasminogen binds to the enolase enzyme of S. mutans. These findings identify S. mutans α-enolase as a binding molecule used by this oral pathogen to interact with the blood component, plasminogen. Further studies of this interaction may be critical to understand the pathogenesis of endocarditis caused by S. mutans.  相似文献   

9.
Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.  相似文献   

10.
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.  相似文献   

11.
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.  相似文献   

12.
Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.  相似文献   

13.
Nine compounds isolated from the leaf and stem of Vitis amurensis Rupr. (Vitaceae) were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Streptococcus sanguis, which are associated with caries and periodontal disease, respectively. The results of several antimicrobial tests, including MIC, MBC, and TBAI, showed that three compounds inhibited the growth of the test bacteria at concentrations ranging from 12.5 to 50 μg/mL. Among these compounds, compound 5, trans-ε-viniferin, displayed the strongest activity against S. mutans and S. sanguis with MIC values of 25 and 12.5 μg/mL, respectively. This is the first report on the antimicrobial activity of stilbenes and oligostilbenes isolated from the leaf and stem of V. amurensis. Thus, this result suggests that natural antimicrobial compounds derived from V. amurensis may benefit oral health as plaque-control agents for the prevention of dental caries and periodontal disease.  相似文献   

14.
The c subunit of Streptococcus mutans ATP synthase (FoF1) is functionally exchangeable with that of Escherichia coli, since E. coli with a hybrid FoF1 is able to grow on minimum succinate medium through oxidative phosphorylation. E. coli F1 bound to the hybrid Fo with the S. mutans c subunit showed N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity similar to that of E. coli FoF1. Thus, the S. mutans c subunit assembled into a functional Fo together with the E. coli a and b subunits, forming a normal F1 binding site. Although the H+ pathway should be functional, as was suggested by the growth on minimum succinate medium, ATP-driven H+ transport could not be detected with inverted membrane vesicles in vitro. This observation is partly explained by the presence of an acidic residue (Glu-20) in the first transmembrane helix of the S. mutans c subunit, since the site-directed mutant carrying Gln-20 partly recovered the ATP-driven H+ transport. Since S. mutans is recognized to be a primary etiological agent of human dental caries and is one cause of bacterial endocarditis, our system that expresses hybrid Fo with the S. mutans c subunit would be helpful to find antibiotics and chemicals specifically directed to S. mutans.  相似文献   

15.
The objective of the study was to investigate the antimicrobial effects of deglycyrrhizinated licorice root extracts (DG-LRE) against Streptococcus mutans UA159 in both the planktonic and biofilm phases by determining the minimum inhibitory concentration and minimum bactericidal concentration, and by performing time-kill kinetic, growth, adhesion, and biofilm assays. The cell toxicity of DG-LRE on normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. This study showed that DG-LRE had strong antimicrobial activity against S. mutans in the planktonic phase with little cytotoxic effect on NHGF cells. In addition, DG-LRE significantly inhibited biofilm formation by S. mutans UA159 at concentrations over 4 μg/ml for glucose or 16 μg/ml for sucrose, respectively, regardless of the presence of saliva-coating. To the best of our knowledge, this is the first report to provide evidence that DG-LRE demonstrates antimicrobial activity against S. mutans. These results suggest that DG-LRE can be used in developing oral hygiene products, such as gargling solution and dentifrice to prevent human dental caries.  相似文献   

16.
The dextranase added in current commercial dextranase-containing mouthwashes is largely from fungi. However, fungal dextranase has shown much higher optimum temperature than bacterial dextranase and relatively low activity when used in human oral cavities. Bacterial dextranase has been considered to be more effective and suitable for dental caries prevention. In this study, a dextranase (Dex410) from marine Arthrobacter sp. was purified and characterized. Dex410 is a 64-kDa endoglycosidase. The specific activity of Dex410 was 11.9 U/mg at optimum pH 5.5 and 45 °C. The main end-product of Dex410 was isomaltotriose, isomaltoteraose, and isomaltopentaose by hydrolyzing dextran T2000. In vitro studies showed that Dex410 effectively inhibited the Streptococcus mutans biofilm growth in coverage, biomass, and water-soluble glucan (WSG) by more than 80, 90, and 95 %, respectively. The animal experiment revealed that for short-term use (1.5 months), both Dex410 and the commercial mouthwash Biotene (Laclede Professional Products, Gardena, CA, USA) had a significant inhibitory effect on caries (p = 0.0008 and 0.0001, respectively), while for long-term use (3 months), only Dex410 showed significant inhibitory effect on dental caries (p = 0.005). The dextranase Dex410 from a marine-derived Arthrobacter sp. strain possessed the enzyme properties suitable to human oral environment and applicable to oral hygiene products.  相似文献   

17.
18.
19.
Salicylate is an important intermediate in the bacterial degradation of polycyclic aromatic hydrocarbons and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. Unlike the well-characterized salicylate 1-hydroxylases, the rarely occurred salicylate 5-hydroxylase (S5H) has not been characterized in detail. In this study, the three-component Fe-S protein complex (NagAaGHAb) of S5H from Ralstonia sp. strain U2 was purified, and its biochemical and catalytic properties were characterized. The oxygenase component NagGH exhibited an α3β3 heterohexameric structure and contained one Rieske-type [2Fe-2S] cluster and one mononuclear iron per α subunit. NagAa is the ferredoxin-NADP+ reductase component containing flavin and plant type [2Fe–2S] cluster. The ferredoxin component NagAb was characterized as a [2Fe-2S] dimer which remains remarkably stable in denaturing gel electrophoresis after being heated at 100 °C for 1 h. Purified NagAa and NagAb, NagGH catalyzed the hydroxylation of salicylate to gentisate with a specific activity of 107.12?±?14.38 U/g and showed an apparent K m for salicylate of 102.79?±?27.20 μM and a similar K m value for both NADH and NADPH (59.76?±?7.81 μM versus 56.41?±?12.76 μM). The hydroxylase exhibited different affinities for two hydroxysalicylates (2,4-dihydroxybenzoate K m of 93.54?±?18.50 μM versus 2,6-dihydroxybenzoate K m of 939.80?±?199.46 μM). Interestingly, this S5H also showed catalytic activity to the pollutant 2-nitrophenol and exhibited steady-state kinetic data of the same order of magnitude as those for salicylate. This study will allow further comparative studies of structure–function relationships of the ring hydroxylating mono- and di-oxygenase systems.  相似文献   

20.
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号