首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the pattern of expression of the three calmodulin (CaM) genes by in situ hybridization, gene-specific [35S]-cRNA probes complementary to the multiple CaM mRNAs were hybridized in rat brain sections and subsequently detected by quantitative film or high-resolution nuclear emulsion autoradiography. A widespread and differential area-specific distribution of the CaM mRNAs was detected. The expression patterns corresponding to the three CaM genes differed most considerably in the olfactory bulb, the cerebral and cerebellar cortices, the diagonal band, the suprachiasmatic and medial habenular nuclei, and the hippocampus. Moreover, the significantly higher CaM I and CaM III mRNA copy numbers than that of CaM II in the molecular layers of certain brain areas revealed a differential dendritic targeting of these mRNAs. The results indicate a differential pattern of distribution of the multiple CaM mRNAs at two levels of cellular organization in the brain: (a) region-specific expression and (b) specific intracellular targeting. A precise and gene-specific regulation of synthesis and distribution of CaM mRNAs therefore exists under physiological conditions in the rat brain.  相似文献   

2.
In situ hybridization can be used to quantitate viral RNA at the single cell level by measuring levels of hybridization after saturation hybridization with an excess of cDNA probe has been achieved (1,2). In this paper we describe an alternative approach which consists in measuring the initial hybridization rate using a low concentration of cDNA probe and a short hybridization time. Under these conditions, we obtained a linear relationship between the number of autoradiographic grains and the number of viral genomes per cell in the range of 600 to 60,000 copies per cell of a 7-kb RNA genome. This approach allows an accurate measurement of copy number in a range for which saturation in situ hybridization is very difficult to achieve.  相似文献   

3.
J Jiang  B S Gill 《Génome》1994,37(5):717-725
Nonisotopic in situ hybridization (ISH) was introduced in plants in 1985. Since then the technique has been widely used in various areas of plant genome mapping. ISH has become a routine method for physical mapping of repetitive DNA sequences and multicopy gene families. ISH patterns on somatic metaphase chromosomes using tandemly repeated sequences provide excellent physical markers for chromosome identification. Detection of low or single copy sequences were also reported. Genomic in situ hybridization (GISH) was successfully used to analyze the chromosome structure and evolution of allopolyploid species. GISH also provides a powerful technique for monitoring chromatin introgession during interspecific hybridization. A sequential chromosome banding and ISH technique was developed. The sequential technique is very useful for more precise and efficient mapping as well as cytogenetic determination of genomic affinities of individual chromosomes in allopolyploid species. A critical review is made on the present resolution of the ISH technique and the future outlook of ISH research is discussed.  相似文献   

4.
This study aims at the quantification of specific DNA sequences by using fluorescence in situ hybridization (ISH) and digital imaging microscopy. The cytochemical and cytometric aspects of a quantitative ISH procedure were investigated, using human peripheral blood lymphocyte interphase nuclei and probes detecting high copy number target sequences as a model system. These chromosome-specific probes were labeled with biotin, digoxigenin, or fluorescein. Quantification of the fluorescence ISH signals was performed using an epifluorescence microscope equipped with a multi-wavelength illuminator, and a cooled charge coupled device (CCD) camera. Specific image analysis programs were developed for the segmentation and analysis of the images provided by ISH. The fluorescence intensity distributions of the ISH spots showed large internuclear variation (CVs up to 65%) for the probes used. The variation in intensity was found to be independent of the probe, the type of labeling, and the type of immunocytochemical detection used. Variation in intensity was not caused primarily by the immunocytochemical detection method, since directly fluorescein-labeled probes showed similar internuclear variation. Furthermore, it was found that different white blood cell types, which harbor different degrees of compactness of the nuclear chromatin, showed the same variation. The intra-nuclear variation in intensity of the ISH spots on the two chromosome homologs within one nucleus was significantly smaller (approximately 20%) than the inter-nuclear variation, probably due to more constant local hybridization conditions. Due to the relatively small intranuclear variation, copy number polymorphisms of the satellite DNA sequence on chromosome 1 could readily be quantified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
In situ hybridization (ISH) of somatostatin (SOM) mRNA was carried out on sections of rat brain using an alkaline phosphatase (AP) coupled oligonucleotide probe. Different hybridization and AP development conditions were tested for qualitative and quantitative detection of target mRNA on sections of unfixed tissue. Hybridization signal intensities after 24 h of hybridization were high. Comparison with adjacent formaldehydefixed tissue sections and hybridization for various lengths of time (2–42 h) indicated that in unfixed tissue retention of SOM mRNA was at least as high as after fixation, and that the mRNA was not degraded during hybridization. The use of tetranitroblue instead of nitroblue tetrazolium chloride in the AP detection medium provided a superior signal-to-noise ratio, and medium stability was improved for quantitative studies on unfixed sections by adding 10% polyvinyl alcohol at pH 8.5. Microphotometric measurements of mean optical densities (MOD) of the formazan reaction product in a defined area within individual neurons of the lateral central amygdaloid nucleus showed a linear increase over the first 23 h of AP reaction time. The mean MOD values per neuron were comparably high in various equally thick sections of the nucleus and increased with section thickness in a linear manner. The findings indicate that the ISH and detection reagents penetrate the entire section and that there is a linear relationship between the amount of AP reaction product measured and the amount of mRNA present in the measured area. Thus, ISH using an AP-coupled oligonucleotide on sections of unfixed tissue appears suitable for quantitative mRNA detection.  相似文献   

7.
We describe a novel histochemical procedure for simultaneous detection of mRNA expression by in situ hybridization (ISH) and DNA synthesis on cells that are pulse-labeled with bromodeoxyuridine (BrdU) by immunohistochemistry (ICC). Pregnant rats were injected with BrdU at embryonic Day 20 and the olfactory bulbs of their pups were collected daily. The expression of calmodulin (CaM) mRNA was analyzed by ISH with an anti-sense digoxigenin-labeled riboprobe and BrdU incorporation by indirect ICC. Starting 5 days after BrdU injection, a few tufted and granular neurons of the olfactory bulb were observed to be double labeled for CaM mRNA and BrdU. To study the olfactory neuroepithelium, adult animals were injected with BrdU, sacrificed after 30 days, and the nasal mucosa dissected and decalcified. The co-expression of CaM mRNA and BrdU incorporation was then analyzed in the olfactory neuroepithelium: BrdU-positive primary olfactory neurons were also CaM mRNA positive. The combination of ISH and ICC on the same section resulted in improved BrdU staining with respect to both increased intensity and reduced background levels. The procedure described here can be applied to a variety of problems in developmental biology and is of potential value for correlating the timing of specific mRNA expression with the birth date of a cell type of interest.  相似文献   

8.
High-resolution in situ hybridization to whole-mount zebrafish embryos   总被引:3,自引:0,他引:3  
The in situ hybridization (ISH) technique allows the sites of expression of particular genes to be detected. This protocol describes ISH of digoxigenin-labeled antisense RNA probes to whole-mount zebrafish embryos. In our method, PCR-amplified sequence of a gene of interest is used as a template for the synthesis of an antisense RNA probe, which is labeled with digoxigenin-linked nucleotides. Embryos are fixed and permeabilized before being soaked in the digoxigenin-labeled probe. We use conditions that favor specific hybridization to complementary mRNA sequences in the tissue(s) expressing the corresponding gene. After washing away excess probe, hybrids are detected by immunohistochemistry using an alkaline phosphatase-conjugated antibody against digoxigenin and a chromogenic substrate. The whole procedure takes only 3 days and, because ISH conditions are the same for each probe tested, allows high throughput analysis of zebrafish gene expression during embryogenesis.  相似文献   

9.
To expand the multiplicity of the in situ hybridization (ISH) procedure, which is presently limited by the number of fluorochromes spectrally separable in the microscope, a digital fluorescence ratio method is proposed. For this purpose, chromosome-specific repetitive probes were double-labeled with two haptens and hybridized to interphase nuclei of human peripheral blood lymphocytes. The haptens were immunocytochemically detected with specific antibodies conjugated with the fluorochromes FITC or TRITC. The FITC and TRITC fluorescence intensities of spots obtained with different double-haptenized probes were measured, and the fluorescence ratio was calculated for each ISH spot. Combinations of different haptens, such as biotin, digoxigenin, fluorescein, sulfonate, acetyl amino fluorene (AAF), and mercury (Hg) were used. The fluorescence intensity ratio (FITC/TRITC) of the ISH spots was fairly constant for all combinations used, with coefficients of variation between 10 and 30%. To study the feasibility of a probe identification procedure on the basis of probe hapten ratios, one probe was double-labeled with different ratios, by varying the relative concentrations of the modified nucleotides (biotin-11-dUTP and digoxigenin-11-dUTP) in the nick-translation reaction. Measurement of the FITC and TRITC intensities of the ISH spots showed that the concentration of modified nucleotides used in the labeling procedures was reflected in the mean fluorescence intensity of the ISH spots. Furthermore, the ratio distributions showed little overlap due to the relatively small coefficients of variation. The results indicate that a multiple ISH procedure based on fluorescence ratio imaging of double-labeled probes is feasible.  相似文献   

10.
In situ hybridization (ISH) using nonradioactive probes enables mRNAs to be detected with improved cell resolution but compromised sensitivity compared to ISH with radiolabeled probes. To detect rare mRNAs, we optimized several parameters for ISH using digoxygenin (DIG)-labeled probes, and adapted tyramide signal amplification (TSA) in combination with alkaline phosphatase (AP)-based visualization. This method, which we term TSA-AP, achieves the high sensitivity normally associated with radioactive probes but with the cell resolution of chromogenic ISH. Unlike published protocols, long RNA probes (up to 2.61 kb) readily permeated cryosections and yielded stronger hybridization signals than hydrolyzed probes of equivalent complexity. RNase digestion after hybridization was unnecessary and led to a substantial loss of signal intensity without significantly reducing nonspecific background. Probe concentration was also a key parameter for improving signal-to-noise ratio in ISH. Using these optimized methods on rat taste tissue, we detected mRNA for mGluR4, a receptor, and transducin, a G-protein, both of which are expressed at very low abundance and are believed to be involved in chemosensory transduction. Because the effect of the tested parameters was similar for ISH on sections of brain and tongue, we believe that these methodological improvements for detecting rare mRNAs may be broadly applicable to other tissues. (J Histochem Cytochem 47:431-445, 1999)  相似文献   

11.
A comparative study was performed of interphase in situ hybridization (ISH) to deparaffinized 4-m tissue sections and nuclear suspensions from eight prostatic adenocarcinomas, as well as one normal prostatic control. Whole nuclear suspensions were derived from the same tumor areas to evaluate differences of ISH to truncated versus whole nuclei. DNA probes specific for the centromeres of chromosome 1, 7, 8, 10, and Y were used for detection of numerical chromosomal changes and aneuploidy. In six adenocarcinomas chromosome aberrations (+7, +8, –8, –10, –Y) were seen. However, ISH to sections revealed focal aberrations (–10, –Y) in four cases that could not be distinguished in the suspensions. Chromosomal alterations occurring in larger tumor areas were also detected in the nuclear suspensions. Chromosome copy number changes, especially gains, were better discriminated in the nuclear suspensions. The rate of ISH aneuploidy seen in nuclear suspensions corresponded with that observed in the tissue sections (P<0.01). Ploidy patterns as assessed by ISH to sections and nuclear suspensions were in concordance with DNA flow cytometry (bothP<0.001). We conclude that both section and suspension ISH were able to accurately detect aneuploidy and numerical chromosomal aberrations occurring in larger histological areas. However, section ISH was also capable of revealing (small) focal cytogenetic abnormalities, due to a precise analysis of only target cells. Focal abnormalities were not detected by suspension ISH, probably due to an admixture of non-aberrant tumor cells and stromal elements.  相似文献   

12.
The relative insensitivity of nonradioactive mRNA detection in tissue sections compared to the sensitive nonradioactive detection of single-copy DNA sequences in chromosome spreads, or of mRNA sequences in whole-mount samples, has remained a puzzling issue. Because of the biological significance of sensitive in situ mRNA detection in conjunction with high spatial resolution, we developed a nonradioactive in situ hybridization (ISH) protocol for detection of mRNA sequences in sections. The procedure is essentially based on the whole-mount ISH procedure and is at least equally sensitive. Increase of the hybridization temperature to 70C while maintaining stringency of hybridization by adaptation of the salt concentration significantly improved the sensitivity and made the procedure more sensitive than the conventional radioactive procedure. Thicker sections, which were no improvement using conventional radioactive ISH protocols, further enhanced signal. Higher hybridization temperatures apparently permit better tissue penetration of the probe. Application of this highly reliable protocol permitted the identification and localization of the cells in the developing heart that express low-abundance mRNAs of different members of the Iroquois homeobox gene family that are supposedly involved in cardiac patterning. The radioactive ISH procedure scarcely permitted detection of these sequences, underscoring the value of this novel method.  相似文献   

13.
We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)  相似文献   

14.
Detection of trisomy 8 in hematological disorders by in situ hybridization   总被引:5,自引:0,他引:5  
An alphoid repetitive DNA (D8Z2) probe specific for the pericentromeric region of chromosome 8 was used to detect extra copies of chromosome 8 in bone marrow cells obtained from 10 patients with hematological disorders and five controls. Numerical aberrations of chromosome 8 were established by conventional banding techniques. Trisomy 8 was found in four patients with myelodysplastic syndrome (MDS) and three with acute myeloid leukemia (AML). Three additional patients with MDS exhibited an extra chromosome 8 in only one metaphase. In five of the seven trisomy cases, the presence of the trisomy 8 clone was confirmed by in situ hybridization (ISH). In one case of AML with trisomy 8, detected by GTG-banding, no significant numbers of cells containing three spots were found using the alphoid repetitive probe; however, hybridization with a chromosome 8-specific library revealed that the alleged extra chromosome 8 was a translocation chromosome containing only the long arm of chromosome 8. Due to a lack of material, it was not possible to achieve optimal ISH results on the trisomy 8 bone marrow cells of patient 7. In the three MDS patients with a single trisomy 8 metaphase, a slight, albeit significant, increase of trisomy 8 interphase cells was found with ISH. We conclude that this probe is useful for cytogenetic studies. Moreover, ISH, in general, is a powerful tool for precise classification of chromosomal aberrations and can also contribute significantly to the clinical evaluation of patients with hematological disorders.  相似文献   

15.
With the emergence of genome-wide colorimetric in situ hybridization (ISH) data sets such as the Allen Brain Atlas, it is important to understand the relationship between this gene expression modality and those derived from more quantitative based technologies. This study introduces a novel method for standardized relative quantification of colorimetric ISH signal that enables a large-scale cross-platform expression level comparison of ISH with two publicly available microarray brain data sources.  相似文献   

16.
The universal quantitation of the DNA hybridization reaction has been a goal sought by many researchers. Part of this search has been the need to develop a rapid, sensitive, easy-to-perform, and quantitative method to measure the abundance of specific mRNAs directly within cells. Conventionally mRNA detection can be done by advanced quantitativein situ hybridization (ISH) using either image analysis or fluorescencein situ hybridization (FISH), or indirectly by extraction of mRNA from cells or tissue and using Northern blot or quantitative polymerase chain reaction (PCR). We examined the quantitative nature of probe binding to intracellular mRNA in a sensitive and easy-to-use nonisotopic method of ISH previously developed in our laboratories. The method is applicable to isolated primary cells or cells in culture. The procedural details are very simple, with cells being centrifuged into 96-well microplates, fixed with formalin, and pretreated with Triton X-100 and Nonidet P-40 before photobiotin-labeled cDNA probes are applied. Biotin from the hybridization of probe to target is detected using multiple applications of streptavidin and biotinylated alkaline phosphatase and visualized by thep-nitrophenyl phosphate conversion method. The quantitative parameters of the ISH procedure were determined by measuring the levels of expression of erythropoietin (EPO) mRNA and its translated protein in transfected COS-7 cells. There is a log-linear relationship between the levels of signal obtained in the ISH reaction in 96-well microplates and the EPO protein levels measured by enzyme-linked immunosorbent assay (ELISA). This demonstrated relationship is important in the standardization and use of these procedures to measure quantitatively mRNAs within cells.  相似文献   

17.
18.
DNA in situ hybridization (DNA ISH) is a commonly used method for mapping sequences to specific chromosome regions. This approach is particularly effective at mapping highly repetitive sequences to heterochromatic regions, where computational approaches face prohibitive challenges. Here we describe a streamlined protocol for DNA ISH that circumvents formamide washes that are standard steps in other DNA ISH protocols. Our protocol is optimized for hybridization with short single strand DNA probes that carry fluorescent dyes, which effectively mark repetitive DNA sequences within heterochromatic chromosomal regions across a number of different insect tissue types. However, applications may be extended to use with larger probes and visualization of single copy (non-repetitive) DNA sequences. We demonstrate this method by mapping several different repetitive sequences to squashed chromosomes from Drosophila melanogaster neural cells and Nasonia vitripennis spermatocytes. We show hybridization patterns for both small, commercially synthesized probes and for a larger probe for comparison. This procedure uses simple laboratory supplies and reagents, and is ideal for investigators who have little experience with performing DNA ISH.  相似文献   

19.
In this study we aimed at the development of a cytometric system for quantification of specific DNA sequences using fluorescence in situ hybridization (ISH) and digital imaging microscopy. The cytochemical and cytometric aspects of a quantitative ISH procedure were investigated, using human peripheral blood lymphocyte interphase nuclei and probes detecting high copy number target sequences as a model system. These chromosome-specific probes were labeled with biotin, digoxigenin, or fluorescein. The instrumentation requirements are evaluated. Quantification of the fluorescence ISH signals was performed using an epi-fluorescence microscope with a multi-wavelength illuminator, equipped with a cooled charge couple device (CCD) camera. The performance of the system was evaluated using fluorescing beads and a homogeneously fluorescing specimen. Specific image analysis programs were developed for the automated segmentation and analysis of the images provided by ISH. Non-uniform background fluorescence of the nuclei introduces problems in the image analysis segmentation procedures. Different procedures were tested. Up to 95% of the hybridization signals could be correctly segmented using digital filtering techniques (min-max filter) to estimate local background intensities. The choice of the objective lens used for the collection of images was found to be extremely important. High magnification objectives with high numerical aperture, which are frequently used for visualization of fluorescence, are not optimal, since they do not have a sufficient depth of field. The system described was used for quantification of ISH signals and allowed accurate measurement of fluorescence spot intensities, as well as of fluorescence ratios obtained with double-labeled probes.  相似文献   

20.
To devise a more sensitive method for identifying proliferative cells in routinely formalin-fixed, paraffin-embedded tissues, we applied an in situ hybridization (ISH) technique for the detection of histone H3 mRNA in rat gastric mucosa and amplified the signal by a silver intensification method. ISH was performed using a Fluorescein-labelled, single-stranded DNA probe for the human histone H3 gene. To determine the optimal conditions for detecting H3 mRNA in rat gastric mucosa, we tested the effect of changing conditions, such as fixation time and digestion time, by a proteinase before hybridization. Next, the proliferation indices obtained using H3 ISH were compared with those obtained using bromodeoxyuridine (BrdU) immunohistochemistry. In normal rat gastric mucosa, H3 ISH- and BrdU-positive cells were confined to the neck region of both fundic and pyloric mucosa. The two labelling indices were almost the same. In all the serial sections studied, H3 ISH-positive cells were almost always BrdU-positive too. Taken together, these results indicate that the H3 ISH technique is useful for the evaluation of proliferative activity in gastric epithelial cells by virtue of its detection of S-phase cells This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号