共查询到20条相似文献,搜索用时 125 毫秒
1.
乳腺癌干细胞是乳腺肿瘤内具有自我更新能力以及多向分化潜能的细胞,乳腺癌的发生﹑发展、转移﹑复发与干细胞的高致瘤性、高侵袭转移性、治疗抵抗能力密切相关。深入研究乳腺癌干细胞相关细胞因子及微环境因素的调控对乳腺癌的临床靶向治疗具有重要指导意义。该文就近年来乳腺癌干细胞调控相关信号转导通路、转录因子、表观遗传调控因子以及微环境因素进行综述,探讨乳腺癌干细胞及其相关信号因子作为乳腺癌治疗靶点的潜在价值,为临床靶向治疗乳腺癌提供新方向。 相似文献
2.
3.
4.
5.
除骨髓移植外,以化疗为主的急性白血病治愈率很低,尤其因耐药复发的难治性急性白血病不能治愈的原因是患者体内存在一群具有自我更新能力的白血病干细胞。虽然这些细胞数量极少,但可自我更新,具有很强的增殖潜能,在白血病发生和复发过程中起着关键性作用。白血病干细胞的存在和增殖受细胞表面分子、细胞调控信号通路、细胞自我更新信号通路与骨髓微环境等多因素影响,其中,细胞自我更新信号通路及其相关基因表达在维系白血病干细胞生物学特征方面发挥着重要作用 相似文献
6.
7.
肿瘤干细胞是存在于肿瘤组织中的具有自我更新、增殖、分化的部分细胞群,对肿瘤的发生、发展有十分重要的作用. 肿瘤干细胞特异的表面分子及其异常活化的信号通路,是其区别于其他肿瘤细胞的特性.寻找和鉴定特异的肿瘤干细胞的表面标志物,从而识别肿瘤组织中的肿瘤干细胞,并进行相关信号调控机制研究,是肿瘤早期诊断及肿瘤干细胞靶向治疗的关键. 本文简要概述了肿瘤干细胞相关的表面标志物及信号通路的研究进展,旨在为进一步开展针对肿瘤干细胞的抗体靶向治疗提供新思路. 相似文献
8.
9.
Wnt信号通路与神经干细胞 总被引:2,自引:0,他引:2
神经干细胞增殖、分化机制的研究为神经系统疾病治疗提供了新的途径,具有巨大的潜在应用价值和理论研究意义。业已发现,Wnt信号通路对神经干细胞的增殖发挥着决定性作用,但新近的研究却表明Wnt信号能够明显促进神经干细胞向神经元分化,这种不同的表现可能与神经干细胞的内在特点、周围环境及靶基因的不同有关。本文试从Wnt信号通路及其在调控神经干细胞的增殖、分化中的作用加以综述。 相似文献
10.
骨髓干细胞包括造血干细胞(HSCs)和间充质干细胞(MSCs),骨髓间充质干细胞(BMSCs)是一类具有自我更新、增殖和多向分化能力的细胞,具有不对称分裂和无限增殖的特点。在肝细胞生长因子(HGF)的作用下,BMSCs可以分化为肝细胞,参与诱导这一分化过程的相关信号通路包括NF-kB信号通路、Notch信号通路、MAPK信号通路、Wnt信号通路和STAT3信号通路。文章主要就BMSCs分化为肝细胞的相关信号通路进行了综述。 相似文献
11.
12.
13.
14.
Background
The intricate regulation of several signaling pathways is essential for embryonic development and adult tissue homeostasis. Cancers commonly display aberrant activity within these pathways. A population of cells identified in several cancers, termed cancer stem cells (CSCs) show similar properties to normal stem cells and evidence suggests that altered developmental signaling pathways play an important role in maintaining CSCs and thereby the tumor itself.Scope of review
This review will focus on the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon cancers. We describe the roles these pathways play in normal tissue homeostasis through the regulation of stem cell fate in these three tissues, and the experimental evidence indicating that the role of these pathways in cancers of these is directly linked to CSCs.Major conclusions
A large body of evidence is accumulating to indicate that the deregulation of Notch, Wnt and Hedgehog pathways play important roles in both normal and cancer stem cells. We are only beginning to understand how these pathways interact, how they are coordinated during normal development and adult tissue homeostasis, and how they are deregulated during cancer. However, it is becoming increasingly clear that if we are to target CSCs therapeutically, it will likely be necessary to develop combination therapies.General significance
If CSCs are the driving force behind tumor maintenance and growth then understanding the molecular mechanisms regulating CSCs is essential. Such knowledge will contribute to better targeted therapies that could significantly enhance cancer treatments and patient survival. This article is part of a Special Issue entitled Biochemistry of Stem Cells. 相似文献15.
近年来成体干细胞研究进展迅速。肺干细胞和肺癌干细胞在表面标志、分离方法和功能研究等方面也取得了一定进展。在肺组织中,肺干细胞维持着肺上皮的更新和稳定,肺脏不同解剖结构存在不同的干细胞,主要的肺干细胞有气管—支气管干细胞、细支气管干细胞、细支气管肺泡干细胞和肺泡干细胞等,不同干细胞特异表面标志也不同。根据肿瘤干细胞理论,目前研究认为肺癌的发生与肺癌干细胞有关,肺癌干细胞来源于其对应肺干细胞的恶性转化。肺癌干细胞特异标志研究主要集中在侧群细胞、CD133和醛脱氢酶等。与其他成体干细胞相似,肺癌干细胞维持自我更新以及分化能力的信号通路主要有Wnt、Hedgehog和Notch通路等。肺癌干细胞与肺癌的发生、发展、转移、治疗反应及预后关系,也取得了一定的进展。该文对肺干细胞和肺癌干细胞研究进展作简要综述。 相似文献
16.
Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy. In recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer. In particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ER/PR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/PR(+) tumors. 相似文献
17.
Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. 相似文献
18.
Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility
下载免费PDF全文

Stephen R Piccolo Laura M Hoffman Thomas Conner Gajendra Shrestha Adam L Cohen Jeffrey R Marks Leigh A Neumayer Cori A Agarwal Mary C Beckerle Irene L Andrulis Avrum E Spira Philip J Moos Saundra S Buys William Evan Johnson Andrea H Bild 《Molecular systems biology》2016,12(3)
The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway‐based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome‐sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high‐risk women was also identified by pathway‐based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high‐risk and control women, using cell‐based functional assays, drug‐response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell‐based experiments indicate that cell–cell and cell–extracellular matrix adhesion processes seem to be disrupted in non‐malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development. 相似文献
19.
Silvia Borgna Michela Armellin Alessandra di Gennaro Roberta Maestro Manuela Santarosa 《Cell cycle (Georgetown, Tex.)》2012,11(22):4242-4251
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined.
In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition. 相似文献
20.
Andy J. Minn Elena Bevilacqua Jieun Yun Marsha Rich Rosner 《Cell cycle (Georgetown, Tex.)》2012,11(13):2452-2457
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis. 相似文献