首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-抑制蛋白2(β-arrestin2)是一类具有多种生物学功能的细胞内蛋白质,不仅能够通过与G蛋白竞争性结合G蛋白偶联受体(G protein-coupled receptor,GPCR)从而负性调控GPCR信号通路,还可通过G蛋白非依赖性途径参与调节多种信号转导通路,对心血管系统的稳定至关重要。此外,β-arrestin2异常的表达与高血压、心力衰竭、心肌缺血再灌注损伤、心室重塑、动脉粥样硬化以及动脉瘤等多种疾病密切相关。因此,本文就β-arrestin2在心血管疾病领域的研究进展进行综述,阐述β-arrestin2结构、功能及其在炎症反应、细胞代谢中的作用和相关分子机制,以期为心血管疾病诊治提供新的思路。  相似文献   

2.
β-拘留蛋白2(β-arrestin2)是arrestins家族的一个成员,广泛表达于全身组织,其不仅可以调节大多数G蛋白偶联受体(G-protein coupled receptors, GPCRs)的脱敏、内化,还能调节多种非GPCRs的内化,或作为支架蛋白质参与MAPK、PI3K/AKT等信号通路。越来越多的研究发现,β-arrestin2在肿瘤、自身免疫性疾病、纤维化疾病、心血管疾病、代谢性疾病等多种疾病进展过程中表达异常,提示其可能在疾病的病理过程中发挥重要的调控作用。β-arrestin2功能的发挥不仅与其在细胞中的表达水平有关,更依赖于对其活性的调控。但对于β-arrestin2的活性如何被调控,以及其活性如何影响其生物学功能的关注较少。近年来,陆续有研究报道了β-arrestin2可发生磷酸化、泛素化、SUMO化、S-亚硝基化等翻译后修饰,探讨了其翻译后修饰的可能位点,并发现翻译后修饰可影响β-arrestin2的细胞定位、调节受体内吞的作用、β-arrestin2与信号分子的相互作用及下游信号通路,对了解β-arrestin2活性调控在细胞中的作用具有重要意义。本文在...  相似文献   

3.
骨钙素(OCN)能调节多种外周组织器官的生理结构与功能,也发挥重要的中枢调控作用,与个体的学习和记忆等高级认知功能密切相关。研究表明,OCN穿过血脑屏障进入大脑,并与神经元或神经胶质细胞膜上的G蛋白偶联受体(GPCR)家族成员GPR158和GPR37结合,激活或抑制细胞内相关信号通路,改变神经元或神经胶质细胞的生理活性。OCN在脑内的作用主要包括调节5-羟色胺、多巴胺、去甲肾上腺素和γ-氨基丁酸等神经递质合成与释放、增加脑源性神经营养因子表达、促进海马神经发生、增强海马神经元自噬及维持髓鞘稳态等。此外,OCN还能参与调控多种神经退行性疾病的病理生理学进程。在阿尔茨海默病(AD)中,OCN干预能够部分减少β-淀粉样蛋白(Aβ)沉积及Aβ诱发的细胞毒性等,改善学习和记忆能力缺陷;在帕金森氏病(PD)中,OCN干预能够部分抑制黑质和纹状体多巴胺能神经元丢失,增加酪氨酸羟化酶含量及降低神经炎症等,缓解运动功能障碍。本文通过解析GPR158和GPR37的结构与功能,分析OCN在脑内的作用及其生物学机制,探讨OCN对AD和PD等神经退行性疾病的影响,为进一步筛选促进脑健康的新型靶点提供依据。  相似文献   

4.
裴钢  刘畅  黄世超 《生命科学》2010,(3):240-247
细胞内的信号转导网络是由多条功能特异且彼此关联的信号通路所构成,它们赋予了细胞功能的多样性和可塑性,同时也必须受到精细严谨的调控。一些功能广泛的信号调节因子,如β-抑制蛋白(β-arrestin),在细胞信号转导网络完整性的维持中扮演着重要的角色。β-arrestin分子的经典功能是终止G-蛋白偶联受体(G-protein-coupled receptors)下游信号转导,即受体脱敏,但最近许多研究证据表明,这种脱敏功能(负调控)还可以针对其他的信号转导途径。例如,β-arrestin能够通过不同的机制负调控三条重要的NF-κB激活通路,该功能异常则导致NF-κB持续激活以及下游炎性因子的过度分泌。此外,近年来发现β-arrestin还能作为支架蛋白介导功能性信号复合物的形成。例如,在特定外界信号刺激下,β-arrestin1能够转移至细胞核内并与组蛋白乙酰化酶p300相互作用而调控基因表达。该机制的生理意义之一反映在多发性硬化症的小鼠模型中,β-arrestin1在发病小鼠中较正常小鼠表达上调并能够显著加重病情。与之相反,在细胞质中富集的β-arrestin2参与了胰岛素激活时InsR/Akt/β-arrestin2/Src信号复合体的形成,它的缺失能够导致胰岛素耐受和2型糖尿病的发生。因此,在特定的条件下,β-arrestin对于胞内信号的传递究竟是抑制还是激活,已成为细胞信号转导中的关键问题,并在机体健康和疾病状态的相互转化中的起着重要作用。  相似文献   

5.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

6.
既往的研究中,乳酸一直被认为是细胞糖酵解产生的代谢废物。然而,近年的研究表明,乳酸可作为重要的能量代谢底物和信号分子影响多组织器官的生理进程,其运输载体单羧酸转运体及受体G蛋白偶联受体81可能在神经保护过程中发挥关键作用。在中枢神经系统内,乳酸可作用于多种细胞如神经元、星形胶质细胞、小胶质细胞、少突胶质细胞和血管内皮细胞等,参与改善脑能量代谢,增强神经发生,提高突触可塑性,降低神经炎症,缓解神经毒性,促使髓鞘再生,进而影响个体认知功能。适宜的运动有利于脑健康,但运动能否通过调节乳酸及相关生物学机制改善认知功能未见详尽报道。该文通过分析运动如何调控乳酸及其运输载体和受体的生理水平,以及乳酸如何调节认知功能,探讨乳酸作为运动改善认知功能中介分子的可能性,为借助运动疗法缓解认知衰退的相关疾病提供理论支持。  相似文献   

7.
β-arrestin的生物学研究进展   总被引:1,自引:0,他引:1  
Wang QT  Wei W 《生理科学进展》2008,39(2):162-164
β-arrestin 1和2是一类介导受体脱敏的重要可溶性蛋白质,对绝大部分与受体偶联G蛋白介导的信号转导具有重要调节作用,在G蛋白偶联受体(G protein-coupled receptors, GPCRs)脱敏、内化、复敏、细胞增殖反应和基因转录中具有重要地位.对β-arrestin介导的复杂信号通路的研究将揭示它们的调节功能对人类健康的影响,有助于开发新一代影响GPCRs的药物.  相似文献   

8.
2012年度诺贝尔化学奖授予了美国科学家罗伯特.莱夫科维茨(Robert J.Lefkowitz)和布莱恩.克比尔卡(Brian K.Kobilka),以表彰他们在G蛋白偶联受体研究中的贡献。从Robert J.Lefkowitz最初研究β-肾上腺素受体(β-adrenergic receptor,β-AR)减敏机制时发现β-arrestin1至今已有20多年,随着对β-arrestin在细胞信号转导中作用研究的逐渐深入,发现β-arrestin参与β-AR的减敏、内化和降解;近年来又发现,依赖β-arrestin的β-AR信号转导通路具有"偏向激活"现象,并提示这种依赖β-arrestin的"偏向激活"信号转导通路具有心脏保护作用。β-肾上腺素受体阻滞剂的发现和临床应用被视为20世纪药物治疗学上里程碑式的进展,是药物防治心脏疾病的最伟大突破,很多心血管药物都以β-AR为靶点。但是,由于目前受体药物均是针对受体本身的调控,这样在阻断了受体介导的病理性信号通路和功能的同时,也阻断了受体介导的正常生理性信号通路和功能,造成了严重的毒副作用。所以,研发能选择性阻滞β-AR过度激活介导的病理性信号通路和功能的同时,保留受体介导的正常生理性信号通路和功能(如β-arrestin信号通路)的药物,对治疗心血管疾病有重要意义,受体功能选择性的配体药物将成为未来药物的研究方向。该文将回顾β-arrestin的发现过程,综述其与β-AR的相互作用,期望能为心脏疾病的药物治疗提供参考。  相似文献   

9.
GPR120是长链不饱和游离脂肪酸的受体,具有影响食物选择、调节胃肠道肽类激素分泌、促进细胞增殖、调节脂肪细胞发育和分化、调节巨噬细胞迁移和分化及抑制破骨细胞发生等多种生物学功能。GPR120功能缺陷与肥胖、胰岛素抵抗、糖耐量减低、2型糖尿病和脂肪肝等代谢性异常密切相关。深入研究GPR120的生物学功能及其分子机制有助于揭示肥胖、脂代谢紊乱及2型糖尿病等代谢性疾病的发病机制,从而为发掘此类代谢性疾病的新型防治策略提供理论依据。  相似文献   

10.
β-arrestin是一类重要的信号调控蛋白和支架蛋白(scaffold)。在G蛋白偶联受体(G-protein-OOU-piedreceptor,GPCR)信号转导中,β-arrestin不但可以作为GPCR信号的负性调控分子,还能作为支架蛋白促进GPCR对其他信号通路的激活,如有丝分裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)途径。另外β-arrestin还能与转录因子调节蛋白,如IKB和Mdm2相互作用问接调节NF-κB和P53介导的转录。  相似文献   

11.
目的: 探讨NOD样受体蛋白3(NLRP3)信号通路对非酒精性脂肪肝病(NAFLD)大鼠胰岛素抵抗的影响及乳酸受体G蛋白偶联受体81(GPR81)激动剂的干预作用。方法: 选择清洁级SD雄性大鼠30只,随机分为3组,对照组、NAFLD组、GPR81激动剂组,每组10只。用高脂饮食建立大鼠非酒精性脂肪肝模型;GPR81激动剂组:在非酒精性脂肪肝模型基础上腹腔注射GPR81特异性乳酸激动剂(50 nmol/L),每周1次,其余两组注射等量的生理盐水,共12周。测定肝生化指标、空腹血糖及胰岛素和肝匀浆中炎症因子的含量,观察各组肝组织病理学形态;Western blot检测肝组织中NLRP3、含CARD结构域的凋亡相关斑点蛋白(ASC)、天冬氨酸特异性半胱氨酸蛋白酶1(caspase-1)、胰岛素受体底物-1(IRS-1)、胰岛素受体底物酪氨酸磷酸化(Tyr465-IRS-1)、胰岛素受体底物丝氨酸磷酸化(Ser636-IRS-1)、葡萄糖转运蛋白4(GLUT4)的蛋白表达;qRT-PCR法检测肝组织NLRP3、ASC、caspase-1、IRS-1、GLUT4 mRNA表达水平。结果: 与对照组相比,NAFLD组大鼠血清肝生化指标甘油三酯(TG)、丙氨酸转氨酶(ALT)、天门冬氨酸氨基转移酶(AST)、空腹血糖(FPG)、空腹胰岛素(FINS)和胰岛素抵抗指数(HOMA-IR)值均显著升高(P<0.05);肝组织病理学形态结果表明,NAFLD组大鼠肝组织可见明显的肝脂肪变性,肝细胞有脂肪滴,存在明显的炎性细胞浸润,且NAFLD组肝组织NLRP3、ASC、caspase-1的mRNA和蛋白表达及Ser636-IRS-1的蛋白表达均显著升高,且肝组织及血清中白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)的含量升高;而IRS-1、GLUT4 的mRNA和蛋白表达Tyr465-IRS-1的蛋白表达显著降低(P<0.05);与NAFLD组相比,GPR81激动剂组上述指标均得到明显改善。结论: NLRP3信号通路活化介导炎症因子产生促进了NAFLD的发生发展,GPR81激动剂可能成为NAFLD潜在的治疗手段。  相似文献   

12.
短链脂肪酸受体(G protein-coupled receptor 43,GPR43)属于G蛋白偶联受体(G protein-coupled receptors,GPCR)家族,因其与脂肪和糖代谢相关,在过去的10年中其研究日益受到重视。研究表明,GPR43不仅可以通过参与调节食欲和胃肠肽的分泌来调节脂肪的分解与形成,最终与代谢性疾病如肥胖、2型糖尿病和心血管病的密切相关;而且GPR43还参与调节人身体血脂浓度和炎症发生过程,甚至还与细胞的癌变密切相关。GPR43作为糖代谢、脂肪代谢的重要调节受体,已经成为一个重要的药物筛选靶点。针对GPR43受体的研究现状进行了总结并对今后的应用研究进行了展望。  相似文献   

13.
Wnt信号通路是一条与细胞增殖分化和机体平衡密切相关且高度保守的信号通路,主要包括Wnt/β-catenin信号通路、Wnt-Ca2+信号通路和平面细胞极性信号通路。其中,以经典Wnt/β-catenin信号炎性反应和细胞命运方面的研究最为深入。现已证实,Wnt/β-catenin信号对细胞命运的调控作用具有两面性,不仅通过调节Survivin、Cyclin、C-myc等基因的表达抑制一些肿瘤细胞凋亡,而且可通过上调促凋亡蛋白BIM、Bax和下调抗凋亡蛋白Mcl-1、Bcl-xl的表达量来促进细胞凋亡。同时,该信号还可以通过抑制某些炎性因子的过度分泌,并下调活性氧(reactive oxygen species,ROS)的含量及坏死相关蛋白PARP-1的表达来抑制细胞坏死。该文对Wnt/β-catenin信号对细胞凋亡和坏死的调控研究进展进行综述。  相似文献   

14.
干预GPR1通路对实验性小鼠脂肪累积的影响   总被引:1,自引:0,他引:1  
一直以来,肥胖是令人担忧和烦恼的健康问题,可导致包括2型糖尿病在内的代谢综合征发生.与肥胖相关疾病的发病机制是多因子影响的结果,但是,越来越多的证据表明,脂肪组织分泌的细胞因子(脂联素、瘦素、TNF-α等)的改变,以及局部的炎症反应对于这些疾病的发生具有重要作用.Chemerin(也被称为他扎罗汀诱导基因2或者视黄酸受体反应子2),是近年来发现的一种脂肪细胞因子,是G蛋白偶联受体1(GPR1)的配体,在调节代谢、先天免疫等方面具有重要的作用.为了研究Chemerin及其受体GPR1对小鼠脂肪累积的影响,本课题组通过高脂饲料喂养,成功建立小鼠肥胖模型,利用si RNA干扰技术沉默小鼠和分化前3T3-L1细胞中Chemerin或GPR1基因的表达发现:a.Chemerin及其受体GPR1在高脂饲料喂养小鼠的腹股沟脂肪以及肩胛下脂肪中的表达高于正常饲料组;b.沉默C57BL/6小鼠体内Chemerin或GPR1基因的表达后,肝脏以及腹股沟脂肪组织中脂质的累积受到抑制;c.3T3-L1细胞在体外分化成熟过程中,Chemerin和GPR1也呈高表达的趋势,沉默分化前3T3-L1细胞中Chemerin或GPR1基因的表达后,3T3-L1细胞向脂肪细胞的分化受到影响,降低了脂肪细胞中脂质的累积以及与脂质代谢相关基因的表达,改变了成熟脂肪细胞中新陈代谢功能.这些结果提示,Chemerin及其受体GPR1可能在小鼠脂肪累积中具有调控作用.综上所述,Chemerin/GPR1可能是一种调节脂肪组织中脂质累积的潜在信号通路,为肥胖症等代谢紊乱疾病的治疗提供了可能的作用靶点.  相似文献   

15.
经典的Wnt/β-catenin信号通路在中枢神经系统突触形成和功能中发挥重要的调节作用。作为兴奋性神经递质的谷氨酸,与其受体结合,参与许多信号调节活动。为了探讨NMDA受体活化对Wnt/β-catenin信号通路的作用,该文利用18 d的C57小鼠胚胎培养皮层神经元(离体10 d),用10μmol/L谷氨酸钠(monosodium glutamate,MSG)和50μmol/L N-甲基-D-天冬氨酸(NMDA)处理细胞,通过蛋白免疫印迹技术或者细胞免疫荧光染色分析Wnt/β-catenin信号通路关键成员。结果发现,NMDA受体的活化能使GSK-3β的Ser9位磷酸化水平增加,活性被抑制,胞浆内β-catenin蛋白降解减少,入核增加,激活下游基因表达。这些结果提示,NMDA受体激活能够上调Wnt/β-catenin信号通路。  相似文献   

16.
糖尿病认知功能障碍指糖尿病患者伴有认知功能损伤,是一种常见的糖尿病并发症,尤其高发于老年2型糖尿病患者。研究表明,脂肪组织分泌的细胞因子,如脂联素(adiponectin,APN)和瘦素(leptin,LEP)等不仅能够调节能量代谢,还与糖尿病认知功能障碍的发生发展密切相关,可能作为糖尿病相关认知功能障碍的生物标志物。APN和LEP能够穿过血脑屏障进入大脑,通过结合神经元或神经胶质细胞(如小胶质细胞和星形胶质细胞)上的受体,激活或抑制胞内下游的p38 MAPK、AMPK、ERK、JAK2/STAT3、PI3K/AKT和SIRT1/PGC-1α等信号通路,调节海马神经发生、突触可塑性、神经炎症、氧化应激和神经元凋亡等生理进程,进而调控认知功能。重要的是,APN和LEP还可能作为运动改善糖尿病认知功能障碍的重要介质。通过剖析APN和LEP与糖尿病认知功能障碍之间的关系,梳理APN和LEP调控认知功能的潜在生物学机制,探讨运动介导APN和LEP改善糖尿病认知功能障碍的可能机制,旨在为进一步丰富“脂-脑”crosstalk理论体系,制定并完善糖尿病认知功能障碍的诊疗策略开拓思路。  相似文献   

17.
Cui XB  Han Y  Li L  Wu LL 《生理科学进展》2011,42(3):169-174
脂联素是主要由脂肪细胞分泌的细胞因子,具有胰岛素增敏、抗炎、抗动脉粥样硬化和保护心肌等作用.脂联素的生物学效应需通过脂联素受体1/2的介导来完成.脂联素受体的表达水平直接影响到脂联素对下游信号通路的激活及生物学效应的发挥.对调节脂联素受体表达的因素进行研究,不但有助于揭示调控脂联素受体表达的分子机制,而且也为防治代谢紊乱和心血管疾病提供新思路.  相似文献   

18.
尹旭明  黄冰  马兰  刘星 《生理学报》2013,(2):178-184
β-arrestin2是G蛋白偶联受体的负反馈调控蛋白,介导受体的脱敏,此外β-arrestin2还可以通过招募信号分子,介导G蛋白非依赖的信号传导过程。β-arrestin2广泛分布于各重要脑区,参与神经环路的信号传递。本文旨在研究β-arrestin2在可卡因诱导的小鼠奖赏行为中的作用。采用β-arrestin2基因敲除小鼠(Arrb2/),检测了β-arrestin2在不同剂量可卡因诱导的条件性位置偏爱(conditioned place preference,CPP)形成中的作用,还检测了其在可卡因诱导的自主活动性变化中的作用。结果显示,在中等剂量(20mg/kg)和高剂量(30mg/kg)可卡因诱导的CPP实验中,Arrb2/小鼠比野生型小鼠(Arrb2+/+)表现出更强的可卡因诱导的位置偏爱,而在低剂量(10mg/kg)可卡因实验中两者无显著性差异。可卡因诱导的Arrb2/小鼠的自主活动性显著低于Arrb2+/+小鼠。以上结果提示,β-arresstin2在可卡因诱导的奖赏行为中起重要作用。  相似文献   

19.
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性痴呆为主要特征的中枢神经系统退行性疾病,其认知功能障碍可能与Ⅱ型糖尿病(type 2 diabetes, T2DM)诱发的胰岛素抵抗所损伤的PI3K/Akt胰岛素信号级联通路相关。胰岛素是调节机体新陈代谢的重要激素,通过与神经细胞表面的胰岛素受体结合激活PI3K/Akt信号通路,以调控葡萄糖、脂质的代谢。任何中间媒介功能紊乱所导致的脑胰岛素水平和胰岛素敏感性的降低都会损坏PI3K/Akt信号通路,诱发脑能量代谢障碍、Aβ沉积、Tau蛋白过度磷酸化,引起并加重AD认知功能障碍。因此,本文以PI3K/Akt胰岛素信号通路为主线,揭示了T2DM中脑胰岛素抵抗(insulin resistance, IR)与AD之间的复杂机制,旨在加深对脑IR介导的AD病理过程的系统性理解,借此为延缓或治疗AD的认知功能障碍提供理论基础。  相似文献   

20.
为了研究非基因型雌激素膜性受体GPR30对海马的结构和功能的调节作用,应用硫酸镍铵增强显色的免疫组化技术以及酶标免疫电镜技术,观察了生后雌性大鼠海马内GPR30表达的变化及其免疫阳性产物在神经元亚细胞水平的定位情况.结果显示,GPR30免疫阳性产物主要位于海马CA区的锥体层神经元与齿状回颗粒层的神经元内,其表达水平随发育呈增加趋势.P0时在雌性大鼠海马未发现明显GPR30免疫阳性反应,P7后免疫阳性物质开始在CA2出现,P14时见于 CA1、CA2和齿状回,P30和P60主要见于CA1、CA2、CA3和齿状回.在光镜下,GPR30免疫阳性产物位于细胞核外的胞浆中,细胞核未见免疫阳性反应.在透射电镜下可见其位于神经元的胞浆内,可能主要是粗面内质网,也可见于线粒体和细胞膜.以上结果证实,GPR30是一种位于细胞核外的、非基因型作用的雌激素受体,可能参与了雌激素对海马锥体神经元突触可塑性和学习记忆等功能的调节,还可能参与了对齿状回成年神经干细胞某些活动的调节.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号