首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polanco C  González AI  Dover GA 《Genetics》2000,155(3):1221-1229
Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges at the IGS regions, which can explain the different evolutionary trajectories followed by the IGS and the ITS regions. Here, we provide data from the chromosomal distribution of selected IGS length variants, as well as the detailed internal structure of a large number of IGS regions obtained from specific X and Y chromosomes. The variability found in the different internal subrepeat regions of IGS regions isolated from X and Y chromosomes supports the proposed mechanism of genetic exchanges and suggests that only the "240" subrepeats are involved. The presence of a putative site for topoisomerase I at the 5' end of the 18S rRNA gene would allow for the exchange between X and Y chromosomes of some 240 subrepeats, the promoter, and the ETS region, leaving the rest of the rDNA unit to evolve along separate chromosomal lineages. The phenomenon of localized units (modules) of homogenization has implications for multigene family evolution in general.  相似文献   

2.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   

3.
The 18S-26S nuclear rDNA external transcribed spacer (ETS) has recently gained attention as a region that is valuable in phylogenetic analyses of angiosperms primarily because it can supplement nucleotide variation from the widely used and generally shorter internal transcribed spacers (ITS-1 and ITS-2) and thereby improve phylogenetic resolution and clade support in rDNA trees. Subrepeated ETS sequences (often occurring in the 5(') region) can, however, create a challenge for systematists interested in using ETS sequence data for phylogeny reconstruction. We sequenced the 5(')ETS for members of Lessingia (Compositae, Astereae) and close relatives (26 taxa total) to characterize the subrepeat variation across a group of closely related plant lineages and to gain improved understanding of the structure, molecular evolution, and phylogenetic utility of the region. The 5(')ETS region of Lessingia and relatives varied in length from approximately 245 to 1009 bp due to the presence of a variable number of subrepeats (one to eight). We assessed homology of the subrepeats using phylogenetic analysis and concluded that only two of the subrepeats and a portion of a third ( approximately 282 bp in total) were orthologous across Lessingia and could be aligned with confidence and included in further analyses. When the partial 5(')ETS data were combined with 3(')ETS and ITS data in phylogenetic analyses, no additional resolution of relationships among taxa was obtained beyond that found from analysis of 3(')ETS + ITS sequences. Inferred patterns of concerted evolution indicate that homogenization is occurring at a faster rate in the 3(')ETS and ITS regions than in the 5(')ETS region. Additionally, homogenization appears to be acting within but not among subrepeats of the same rDNA array. We conclude that challenges in assessing subrepeat orthology across taxa greatly limit the utility of the 5(')ETS region for phylogenetic analyses among species of Lessingia.  相似文献   

4.
Reed KM  Hackett JD  Phillips RB 《Gene》2000,249(1-2):115-125
This study examines sequence divergence in three spacer regions of the ribosomal DNA (rDNA) cistron, to test the hypothesis of unequal mutation rates. Portions of two transcribed spacers (ITS-1 and 5' ETS) and the non-transcribed spacer (NTS) or intergenic spacer (IGS) formed the basis of comparative analyses. Sequence divergence was measured both within an individual lake trout (Salvelinus namaycush) and among several related salmonid species (lake trout; brook trout, Salvelinus fontinalis; Arctic char, Salvelinus alpinus; Atlantic salmon, Salmo salar; and brown trout, Salmo trutta). Despite major differences in the length of the rDNA cistron within individual lake trout, minimal sequence difference was detected among cistrons. Interspecies comparisons found that molecular variation in the rDNA spacers did not conform to the predicted pattern of evolution (ITS spacers相似文献   

5.
6.
The 3' region of the external transcribed spacer (ETS) of 18S-26S nuclear ribosomal DNA was sequenced in 19 representatives of Calycadenia/Osmadenia and two outgroup species (Compositae) to assess its utility for phylogeny reconstruction compared to rDNA internal transcribed spacer (ITS) data. Universal primers based on plant, fungal, and animal sequences were designed to amplify the intergenic spacer (IGS) and an angiosperm primer was constructed to sequence the 3' end of the ETS in members of tribe Heliantheae. Based on these sequences, an internal ETS primer useful across Heliantheae sensu lato was designed to amplify and sequence directly the 3' ETS region in the study taxa, which were the subjects of an earlier phylogenetic investigation based on ITS sequences. Size variation in the amplified ETS region varied across taxa of Heliantheae sensu lato from approximately 350 to 700 bp, in part attributable to an approximately 200-bp tandem duplication in a common ancestor of Calycadenia/Osmadenia. Phylogenetic analysis of the 200-bp subrepeats and examination of apomorphic changes in the duplicated region demonstrate that the subrepeats in Calycadenia/Osmadenia have evolved divergently. Phylogenetic analyses of the entire amplified ETS region yielded a highly resolved strict consensus tree that is nearly identical in topology to the ITS tree, with strong bootstrap and decay support on most branches. Parsimony analyses of combined ETS and ITS data yielded a strict consensus tree that is better resolved and generally better supported than trees based on either data set analyzed separately. We calculated an approximately 1.3- to 2.4-fold higher rate of sequence evolution by nucleotide substitution in the ETS region studied than in ITS-1 + ITS-2. A similar disparity in the proportion of variable (1.3 ETS:1 ITS) and potentially informative (1.5 ETS:1 ITS) sites was observed for the ingroup. Levels of homoplasy are similar in the ETS and ITS data. We conclude that the ETS holds great promise for augmenting ITS data for phylogenetic studies of young lineages.  相似文献   

7.
Sequence data from a portion of the external transcribed spacer (ETS) and internal transcribed spacers (ITS-1 and ITS-2) of 18S-26S nuclear ribosomal DNA were used to resolve historical biogeography and ecology of true thistles (Cirsium, Cardueae, Compositae) in the New World. The 650 base-pair, 3' portion of the ETS examined here showed a level of variation across taxa similar to that of the ITS sequences included. A maximum-likelihood tree based on combined ETS and ITS sequences leads us to suggest that the New World species of true thistles constitute a major lineage, which in turn comprises several smaller lineages. A western North American lineage shows weak quartet-puzzling support, but includes a well-supported lineage of species endemic to the California Floristic Province. Comparisons of this Californian lineage with other neoendemic angiosperm groups of the region show that the Californian Cirsium lineage exhibits unusually high ecological diversity for a group displaying such low levels of rDNA sequence divergence across taxa. Similarly low levels of sequence divergence were found throughout the New World Cirsium lineage. These results indicate either that Cirsium underwent a rapid ecological radiation in North America, or that rDNA evolution in North American Cirsium has been highly conservative.  相似文献   

8.
The primary structure of intergenic non-transcribed and external transcribed spacers of rDNA of diploid wheat Triticum urartu, cloned in pTu3 plasmid 2402 b.p. long was determined. The intergenic non-transcribed rDNA spacer of Tr. urartu was shown to consist of 8 subrepeats with an average of 133 b.p. long, heterogeneous in length and nucleotide sequence. A number of repeated sequences was revealed within each subrepeat. While comparing nucleotide sequences of rDNA subrepeats of Tr. urartu and Tr. aestivum a high homology was found (up to 82%). A high similarity between these plant species was also found in the promoter region and in the external transcribed rDNA spacer. Suppression of the nucleolar organizer of 1A chromosome in the presence of 1B and 6B chromosomes of Tr. aestivum is supposed to be connected with the existence of a great number of subrepeats in the intergenic non-transcribed rDNA spacer of B genome donors in polyploid wheat species of turgidum-aestivum row.  相似文献   

9.
The organization, structure, and nucleotide variability of the ribosomal repeat unit was compared among families, genera, and species of cockroaches (Insecta:Blattodea). Sequence comparisons and molecular phylogenetic analyses were used to describe rDNA repeat unit variation at differing taxonomic levels. A reverse similar 1200 bp fragment of the 28S rDNA sequence was assessed for its potential utility in reconstructing higher-level phylogenetic relationships in cockroaches. Parsimony and maximum likelihood analyses of these data strongly support the expected pattern of relationships among cockroach groups. The examined 5' end of the 28S rDNA is shown to be an informative marker for larger studies of cockroach phylogeny. Comparative analysis of the nucleotide sequences of the rDNA internal transcribed spacers (ITS1 and ITS2) among closely related species of Blattella and Periplaneta reveals that ITS sequences can vary widely in primary sequence, length, and folding pattern. Secondary structure estimates for the ITS region of Blattella species indicate that variation in this spacer region can also influence the folding pattern of the 5.8S subunit. These results support the idea that ITS sequences play an important role in the stability and function of the rRNA cluster.  相似文献   

10.
Intraspecific HindIII restriction fragment length polymorphism (RFLP) for the structural organization of the ribosomal gene cluster was described in Blattella germanica. In this species, homologous chromosomes were shown to contain ribosomal DNA (rDNA) repeats that differ in structure. The pattern of inheritance was determined for various structural variants of rDNA.  相似文献   

11.
By analyzing three multigene families, two closely related and commercially important species, Dicentrarchus labrax and Dicentrarchus punctatus, were characterized by cytogenetic and molecular methods. The interspecies hybrid Dicentrarchus labrax (♀) × Dicentrarchus punctatus (♂) was also analyzed. The multigene families studied were the 5S rDNA, 45S rDNA and the U2 snRNA. A microsatellite GTT motif was found within the non transcribed spacers (NTS) of the 5S rDNA from the two species. However, hexanucleotide duplication next to this microsatellite was observed in the D. labrax and hybrid clones, but not in D. punctatus. The U2 snRNA appeared to be linked to the U5 gene and showed two variant sequences, in both D. labrax and D. punctatus. They differed in one insertion/deletion of 7 nucleotides. The first internal transcribed spacer (ITS-1) region showed higher nucleotide variability in D. punctatus than in D. labrax. Nucleotide polymorphism within species and also nucleotide divergence between species were determined in the different gene regions. In a FISH analysis we obtained three chromosomal markers, because the 5S rDNA, 18S rDNA and U2 snRNA probes hybridized each in three different chromosome pairs. Hence none of them was co-localized. The 5S rDNA cluster and U2 snRNA were localized in acrocentric chromosome pairs, while the 18S rRNA gene probe hybridized in a subtelocentric pair. Finally, the usefulness of the results in developing tools for phylogenetic analysis and species identification are discussed in relation to other fish species.  相似文献   

12.
13.
For molecular phylogenetic reconstruction of some intrageneric groups of plants, a DNA region is needed that evolves more rapidly than the internal transcribed spacer (ITS) of the 18S-26S nuclear ribosomal DNA (nrDNA) repeat. If the region identified is nuclear, it would also be desirable for it to undergo rapid concerted evolution to eliminate problems with coalescence. The external transcribed spacer (ETS) of the nrDNA repeat has shown promise for intrageneric phylogenetic reconstruction, but only the 3' end of the region has been utilized for phylogenetic reconstruction and "universal" primers for PCR amplification have been elusive. We present a method for reliably amplifying and sequencing the entire ETS throughout Asteraceae and some closely allied families. We also show that the ETS is more variable and phylogenetically informative than the ITS in three disparate genera of Asteraceae-Argyranthemum (tribe Anthemideae), Asteriscus (tribe Inuleae), and Helianthus (tribe Heliantheae). The full ETS was amplified using a primer (ETS1f) within the intergenic spacer in combination with a primer (18S-2L) in the 5' end of the highly conserved 18S gene. ETS1f was designed to correspond to a highly conserved region found in Helianthus and Crepis, which are in separate subfamilies of Asteraceae. ETS1f/18S-2L primed in all of the tribes of Asteraceae as well as exemplar taxa from Campanulaceae, Goodeniaceae, and Calyceraceae. For both Argyranthemum and Asteriscus, we were able to directly sequence the ETS PCR products when a single band was produced. When multiple bands were produced, we gel-purified and occasionally cloned the band of interest before sequencing. Although PCR produced single bands for Helianthus species, it was necessary to clone Helianthus amplifications prior to sequencing due to multiple intragenomic ETS repeat types. Alignment of ETS sequences for Argyranthemum and Asteriscus was straightforward and unambiguous despite some subrepeat structure in the 5' end. For Helianthus, different numbers of large tandem subrepeats in different species required analysis of the orthology of the subrepeats prior to alignment. In all three genera, the ETS provided more informative variation for phylogenetic reconstruction and allowed better resolution of relationships than the ITS. Although cloned sequences from Helianthus differed, intragenomic clones consistently formed clades. This result indicated that concerted evolution was proceeding rapidly enough in ETS that species-specific phylogenetic signal was retained. It should be now be possible to use the entire ETS for phylogenetic reconstruction of recently diverged lineages in Asteraceae and at least three other families (approximately 26,000 species or about 8% of all angiosperms).  相似文献   

14.
The nuclear ribosomal locus coding for the large subunit is represented in tandem arrays in the plant genome. These consecutive gene blocks, consisting of several regions, are widely applied in plant phylogenetics. The regions coding for the subunits of the rRNA have the lowest rate of evolution. Also the spacer regions like the internal transcribed spacers (ITS) and external transcribed spacers (ETS) are widely utilized in phylogenetics. The fact, that these regions are present in many copies in the plant genome is an advantage for laboratory practice but might be problem for phylogenetic analysis. Beside routine usage, the rDNA regions provide the great potential to study complex evolutionary mechanisms, such as reticulate events or array duplications. The understanding of these processes is based on the observation that the multiple copies of rDNA regions are homogenized through concerted evolution. This phenomenon results to paralogous copies, which can be misleading when incorporated in phylogenetic analyses. The fact that non-functional copies or pseudogenes can coexist with ortholougues in a single individual certainly makes also the analysis difficult. This article summarizes the information about the structure and utility of the phylogenetically informative spacer regions of the rDNA, namely internal- and external transcribed spacer regions as well as the intergenic spacer (IGS).  相似文献   

15.
Variation in ribosomal DNA spacer length was analysed in 23 populations of 12Secale spp. by restriction enzyme analysis. Digestion of rDNA with Taq I endonuclease enzyme yields spacer fragments that include the subrepeat array and the non-repetitive region downstream of the array. Extensive spacer length variation existed in most species with Taq I fragment lengths ranging from 0.9–3.1 kb. These length variants have been attributed to the differences in number of 134 bp spacer subrepeats within rDNA arrays.S. silvestre was the only species to exhibit a unique spacer length variant of 0.9 kb and this was shown to result from the presence of an extra Taq I site in the spacer. rDNA spacer length frequencies were determined for the species. These frequencies were used to derive phenetic relationships between the species by numerical taxonomic methods. In plots constructed fromGower's distance matrices,S. silvestre appeared well separated from the major cluster consisting of the other species. On the basis of morphological and cytogenetic criteria,S. silvestre is considered the most ancient species. The rDNA data is consistent with this interpretation as it shows a clear differentiation ofS. silvestre from all the other species based on length and nucleotide sequence composition of the spacer region.  相似文献   

16.
We have estimated the potential phylogenetic utility of the ribosomal external transcribed spacer (ETS) from the nuclear ribosomal region. The ETS was sequenced from 13 annual Medicago (Fabaceae) species upstream a highly conserved motive which was found among many different organisms. In the genus Medicago, the ETS was found to evolve 1.5 times faster than the internal transcribed spacer and to be 1.5 times more informative. Reduced ribosomal maturation process constraints on ETS are proposed to explain the different evolutionary rates between the two spacers. Maximal phylogenetic resolution and support was obtained when the two spacers were analyzed together. No incongruence between the two spacers was found and ETS appears to be a valuable source of information for solidifying ITS plant phylogeny. The phylogeny obtained in Medicago suggests that none of the three subsections included in the study is monophyletic. Received: 15 April 1997 / Accepted: 29 July 1997  相似文献   

17.
To clarify the taxonomic status of tomatoes (“Lycopersicon”) and their relationship to the members of sect. Petota of genus Solanum L., organization of the rDNA external transcribed spacer (5′ ETS) was studied in 33 Solanum and “Lycopersicon” species. Phylogenetic reconstruction revealed that three major groups can be distinguished. Non-tuber-bearing species of ser. Etuberosa as well as tuber-bearing Central American diploids appeared as a paraphyletic group. The first of two well-defined clades embraced all tuber-bearing South American species and Central American polyploids. The other clade (named “tomato clade”) contains non-tuber-bearing species of ser. Juglandifolia and tomato species of ser. Neolycopersicon, which appears to be imbedded in sect. Petota. The new 5′ ETS variant D characterized by a cluster of downstream subrepeats is characteristic for the tomato clade. The variant D originated directly from the most ancestral variant A found in ser. Etuberosa and the Central American diploids, whereas variants B and C specific for the tuber-bearing South American species and Central American polyploids represent a parallel lineage of molecular evolution. The sequence analysis demonstrates the existence of an evolutionary trend of parallel multiplication of specific motifs in 5′ ETS in different groups of sect. Petota.  相似文献   

18.
19.
We cloned and sequenced the Vicia sativa 25S-18S rDNA intergenic spacer (IGS) and the satellite repeat S12, thought to be related to the spacer sequence. The spacer was shown to contain three types of subrepeats (A, B, and C) with monomers of 173 bp (A), 10 bp (B), and 66 bp (C), separated by unique or partially duplicated sequences. Two spacer variants were detected in V. sativa that differed in length (2990 and 3168 bp) owing to an extra copy of the subrepeat A. The A subrepeats were also shown to be highly homologous to the satellite repeat S12, which is located in large clusters on chromosomes 4, 5, and 6, and is not associated with the rDNA loci. Sequencing of additional S12 clones retrieved from a shotgun genomic library allowed definition of three subfamilies of this repeat based on minor differences in their nucleotide sequences. Two of these subfamilies could be discriminated from the rest of the S12 sequences as well as from the IGS A subrepeats using specific oligonucleotide primers that labeled only a subset of the S12 loci when used in the primed in situ DNA labeling (PRINS) reaction on mitotic chromosomes. These experiments showed that, in spite of the high overall similarity of the IGS A subrepeats and the S12 satellite repeats, there are S12 subfamilies that are divergent from the common consensus and are present at only some of the chromosomes containing the S12 loci. Thus, the subfamilies may have evolved at these loci following the spreading of the A subrepeats from the IGS to genomic regions outside the rDNA clusters.Electronic Supplementary Material Supplementary material is available in the online version of this article at Accession numbers: GenBank AY234364–AY234374. The monomer sequences and additional information about the family of IGS-like repeat S12 will also appear in the PlantSat database (Macas et al. 2002, ) under Accession name Vicia_sativa_IGS-like  相似文献   

20.

Background  

Nuclear ribosomal DNA (rDNA) genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2) and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG). This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation) through heteroduplex analysis and DNA sequencing via cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号