首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Hu K  Huang CS  Jan YN  Jan LY 《Neuron》2003,38(3):417-432
ATP-sensitive potassium (K(ATP)) channels activate under metabolic stress to protect neurons and cardiac myocytes. However, excessive channel activation may cause arrhythmia in the heart and silence neurons in the brain. Here, we report that PKC-mediated downregulation of K(ATP) channel number, via dynamin-dependent channel internalization, can act as a brake mechanism to control K(ATP) activation. A dileucine motif in the pore-lining Kir6.2 subunit of K(ATP), but not the site of PKC phosphorylation for channel activation, is essential for PKC downregulation. Whereas K(ATP) activation results in a rapid shortening of the action potential duration (APD) in metabolically inhibited ventricular myocytes, adenosine receptor stimulation and consequent PKC-mediated K(ATP) channel internalization can act as a brake to lessen this APD shortening. Likewise, in hippocampal CA1 neurons under metabolic stress, PKC-mediated, dynamin-dependent K(ATP) channel internalization can also act as a brake to dampen the rapid decline of excitability due to K(ATP) activation.  相似文献   

2.
We have previously demonstrated that adenosine (Ado) reverses the stimulatory effect of angiotensin II (Ang II) on Na(+)-ATPase activity via the A(2A) receptor. In this work, the molecular mechanism involved in Ado-induced shutdown in the signaling pathway triggered by 10(-8)M Ang II was investigated. It was observed that: (1) both 10(-12)M PMA (a PKC activator) and 5x10(-8)M U73122 (an inhibitor of PI-PLCbeta) prevent the reversion effect induced by 10(-6)M Ado (only observed in the presence of 10(-6)M DPCPX (an A(1) receptor antagonist)) on Ang II-stimulated Na(+)-ATPase and PKC activities; (2) Ang II-stimulated PKC activity was reversed by 10(-6)M forskolin (an adenylyl cyclase activator) or 10(-8)M PKA inhibitory peptide and 10(-8)M DMPX (an A(2) receptor-selective antagonist). Considering that PMA prevents the inhibitory effect of Ado on Ang II-stimulated Na(+)-ATPase and PKC activities, it is likely that the PMA-induced effect, i.e. PKC activation, is downstream of the target for Ado-induced reversion of Ang II stimulation of Na(+)-ATPase activity. We investigated the hypothesis that PI-PLCbeta could be the target for Ado-induced PKA activation. Our data demonstrate that Ang II-stimulated PI-PLCbeta activity was reversed by Ado or 10(-7)M cAMP; the reversibility of the Ado-induced effect was prevented by either DMPX or PKA inhibitory peptide. These data demonstrate that Ado-induced PKA activation reduces Ang II-induced stimulation of PI-PLCbeta.  相似文献   

3.
Kir6.1/SUR2B channel is the major isoform of K(ATP) channels in the vascular smooth muscle. Genetic disruption of either subunit leads to dysregulation of vascular tone and regional blood flows. To test the hypothesis that the Kir6.1/SUR2B channel is a target molecule of arginine vasopressin (AVP), we performed studies on the cloned Kir6.1/SUR2B channel and cell-endogenous K(ATP) channel in rat mesenteric arteries. The Kir6.1/SUR2B channel was expressed together with V1a receptor in the HEK-293 cell line. Whole cell currents of the transfected HEK cells were activated by K(ATP) channel opener pinacidil and inhibited by K(ATP) channel inhibitor glibenclamide. AVP produced a concentration-dependent inhibition of the pinacidil-activated currents with IC(50) 2.0 nM. The current inhibition was mediated by a suppression of the open-state probability without effect on single-channel conductance. An exposure to 100 nM PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect of AVP. In acutely dissociated vascular smooth myocytes, AVP strongly inhibited the cell-endogenous K(ATP) channel. In isolated mesenteric artery rings, AVP produced concentration-dependent vasoconstrictions with EC(50) 6.5 nM. At the maximum effect, pinacidil completely relaxed vasoconstriction in the continuing exposure to AVP. The magnitude of the AVP-induced vasoconstriction was significantly reduced by calphostin-C. These results therefore indicate that the Kir6.1/SUR2B channel is a target molecule of AVP, and the channel inhibition involves G(q)-coupled V1a receptor and PKC.  相似文献   

4.
We studied the effect of adenosine on the Ba(2+)-sensitive K(IR) channels in the smooth muscle cells isolated from the small-diameter (<100microm) coronary arteries of rabbit. Adenosine increased K(IR) currents in concentration-dependent manner (EC(50)=9.4+/-1.4microM, maximum increase of 153%). The adenosine-induced stimulation of K(IR) current was blocked by adenylyl cyclase inhibitor, SQ22536 and was mimicked by adenylyl cyclase activator, forskolin. The adenosine-induced increase of current was blocked by cyclic AMP-dependent protein kinase (PKA) inhibitors, KT 5720 and Rp-8-CPT-cAMPs. The adenosine-induced increase of K(IR) currents was blocked by an A(3)-selective antagonist MRS1334, while the antagonists of other subtypes (DPCPX for A(1), ZM241385 for A(2A), and alloxazine for A(2B)) were all ineffective. Furthermore, an A(3)-selective agonist, 2-Cl-IB-MECA induced increase of K(IR) currents. We also examined the effect of adenosine on coronary blood flow (CBF) rate by using the Langendorff-perfused heart. In the presence of glibenclamide to exclude the effects of ATP-sensitive K(+) (K(ATP)) channels, CBF was increased by adenosine (10microM), which was blocked by the addition of Ba(2+) (50microM). Above results suggest that adenosine increases K(IR) current via A(3) subtype through the activation of PKA in rabbit small-diameter coronary arterial smooth muscle cells.  相似文献   

5.
Huang R  He S  Chen Z  Dillon GH  Leidenheimer NJ 《Biochemistry》2007,46(41):11484-11493
Little is known regarding the mechanism(s) by which glycine receptors are endocytosed. Here we examined the endocytosis of homomeric alpha1 glycine receptors expressed in HEK 293 cells using immunofluorescence/confocal microscopy and whole-cell patch-clamp recordings. Our studies demonstrate that constitutive endocytosis of glycine receptors is blocked by the dominant negative dynamin construct K44A and that intracellular dialysis with peptide P4, a dynamin/amphiphysin-disrupting peptide, increased whole-cell glycine-gated chloride currents. To examine whether receptor endocytosis could be regulated by PKC, experiments with the PKC activator PMA (phorbol 12-myristate 13-acetate) were performed. PMA, but not its inactive analogue PMM (phorbol 12-monomyristate), stimulated receptor endocytosis and inhibited glycine-gated chloride currents. Similar to constitutive endocytosis, PKC-stimulated endocytosis was blocked by dynamin K44A. Mutation of a putative AP2 adaptin dileucine motif (L314A, L315A) present in the receptor cytoplasmic loop blocked PMA-stimulated receptor endocytosis and also prevented PMA inhibition of glycine receptor currents. In patch-clamp experiments, intracellular dialysis of a 12-amino acid peptide corresponding to the region of the receptor containing the dileucine motif prevented PKC modulation of wild-type glycine receptors. Unlike PKC modulation of the receptor, constitutive endocytosis was not affected by mutation of this dileucine motif. These results demonstrate that PKC activation stimulates glycine receptor endocytosis, that both constitutive endocytosis and PKC-stimulated endocytosis are dynamin-dependent, and that PKC-stimulated endocytosis, but not constitutive endocytosis, occurs via the dileucine motif (L314A, L315A) within the cytoplasmic loop of the receptor.  相似文献   

6.
Endothelin-1 (ET-1) and activation of protein kinase C (PKC) have been implicated in alterations of myocyte function in cardiac hypertrophy and heart failure. Changes in cellular Ca2+ handling and electrophysiological properties also occur in these states and may contribute to mechanical dysfunction and arrhythmias. While ET-1 or PKC stimulation induces cellular hypertrophy in cultured neonatal rat ventricular myocytes (NRVMs), a system widely used in studies of hypertrophic signaling, there is little data about electrophysiological changes. Here we studied the effects of ET-1 (100 nM) or the PKC activator phorbol 12-myristate 13-acetate (PMA, 1 μM) on ionic currents in NRVMs. The acute effects of PMA or ET-1 (≤30 min) were small or insignificant. However, PMA or ET-1 exposure for 48-72 h increased cell capacitance by 100 or 25%, respectively, indicating cellular hypertrophy. ET-1 also slightly increased Ca2+ current density (T and L type). Na+/Ca2+ exchange current was increased by chronic pretreatment with either PMA or ET-1. In contrast, transient outward and delayed rectifier K+ currents were strongly downregulated by PMA or ET-1 pretreatment. Inward rectifier K+ current tended toward a decrease at larger negative potential, but time-independent outward K+ current was unaltered by either treatment. The enhanced inward and reduced outward currents also result in action potential prolongation after PMA or ET-1 pretreatment. We conclude that chronic PMA or ET-1 exposure in cultured NRVMs causes altered functional expression of cardiac ion currents, which mimic electrophysiological changes seen in whole animal and human hypertrophy and heart failure.  相似文献   

7.
Modulatory Role of Adenosine Receptors in Insect Motor Nerve Terminals   总被引:1,自引:0,他引:1  
The effects of adenosine and ATP were studied on blowfly larvae Calliphora vicina neuromuscular preparation. Adenosine diminished (IC50 = 40 ± 3 M) the amplitude of nerve-evoked postsynaptic currents (EPSCs) and slightly decreased the frequency of spontaneous currents without affecting their amplitude. EPSCs were slightly reduced by ATP, and this effect was prevented by concanavalin A. Presynaptic inhibition by adenosine was temperature-dependent and insensitive to pertussis toxin. A1 agonists of vertebrate adenosine receptor CPA and NECA failed to reproduce the effect of adenosine, and 2-CADO enhanced the EPSCs. A1 antagonist DPCPX competitively inhibited adenosine action. A2 agonist DPMA potentiated EPSCs, and its effect was abolished by A2 antagonist DMPX. Adenosine and ATP failed to affect the nonquantal release of glutamate. The results show for the first time the presence of presynaptic adenosine receptors regulating transmitter release at insect motor nerve terminals and point to differences in pharmacological properties of adenosine receptor subtypes in insects and vertebrates.  相似文献   

8.
Brain reperfusion may be of particular importance in the etiology of periventricular leukomalacia, of which the common findings are gliosis and ventricular dilatation. To investigate the mechanism of this pathogenesis, we used a metabolic inhibition (MI) model using cyanide plus deoxyglucose treatment of cultured glia isolated from fetal rat brain and examined the activity of extracellular signal-regulated protein kinase (ERK) during MI and also during the recovery from MI of 30 min. ERK activation was stimulated during MI and the recovery from MI. The time course and extent of activation of ERK during MI and the recovery from MI, however, were distinctly different. Activation of ERK was stimulated within 5 min of MI and declined thereafter. Activation of ERK was sustained during the recovery phase from MI and the extent of the activation was much greater than that during MI. Pretreatment with EGTA to eliminate extracellular Ca(2+), or with APV, an NMDA receptor antagonist, to inhibit Ca(2+) influx through the NMDA receptor, attenuated the activation of ERK. Moreover, pretreatment with PMA to downregulate PKC abolished the activation of ERK. PD98059, an inhibitor of ERK kinase, attenuated the cell proliferation induced by MI followed by recovery from MI. These results suggest that ERK is involved in gliosis during the recovery phase from MI and may play a role in the etiology of periventricular leukomalacia.  相似文献   

9.
We have previously shown that after kindling (a model of temporal lobe epilepsy), the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) was unable to augment GABA type A receptor (GABA(A))-mediated synaptic currents occurring on pyramidal cells of the piriform cortex. Phosphorylation of GABA(A) receptors has been shown previously to alter the activity of THDOC, so we tested the hypothesis that kindling induces changes in the phosphorylation of GABA(A) receptors and this accounts for the loss in efficacy. To assay whether GABA(A) receptors are more phosphorylated after kindling, we examined the phosphorylation state of the β3 subunit and found that it was increased. Incubation of brain slices with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) (100 nM) also increased phosphorylation in the same assay. In patch clamp, recordings from non-kindled rat brain slices PMA also reduced the activity of THDOC in a manner that was identical to what is observed after kindling. We also found that the tonic current was no longer augmented by THODC after kindling and PMA treatment. The protein kinase C (PKC) antagonist bisindolylmaleimide I blocked the effects PMA on the synaptic but not the tonic currents. However, the broad spectrum PKC antagonist staurosporine blocked the effects of PMA on the tonic currents, implying that different PKC isoforms phosphorylate GABA(A) receptors responsible for phasic and tonic currents. The phosphatase activator Li(+) palmitate restored the 'normal' activity of THDOC on synaptic currents in kindled brain slices but not the tonic currents. These data demonstrate that kindling enhances the phosphorylation state of GABA(A) receptors expressed in pyramidal neurons reducing THDOC efficacy.  相似文献   

10.
PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT) at reperfusion protects ischemic hearts, but the mechanism is unknown. We recently proposed that in preconditioned hearts PKC lowers the threshold for adenosine to initiate signaling from low-affinity A2b receptors during early reperfusion thus allowing endogenous adenosine to activate survival kinases phosphatidylinositol 3-kinase (PI3K) and ERK. We tested whether CPT might also sensitize A2b receptors to adenosine. CPT (10 microM) during the first minutes of reperfusion markedly reduced infarction in isolated rabbit hearts undergoing 30-min regional ischemia/2-h reperfusion, and salvage was blocked by MRS 1754, an A2b-selective antagonist. Coadministration of wortmannin (PI3K inhibitor) or PD-98059 (MEK1/2 and therefore ERK1/2 inhibitor) also blocked protection. In nonischemic hearts, 10-min infusion of CPT did not change phosphorylation of Akt or ERK1/2. Neither did a subthreshold dose (2.5 nM) of the nonselective but A2b-potent receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). However, when 2.5 nM NECA was combined with 10 microM CPT, both phospho-Akt and phospho-ERK1/2 significantly increased, indicating CPT had lowered the threshold for A2b-dependent signaling. The PKC antagonist chelerythrine blocked this phosphorylation induced by CPT + NECA. Chelerythrine also blocked the anti-infarct effect of CPT as did nonselective (glibenclamide) and mitochondrial-selective (5-hydroxydecanoate) K(ATP) channel blockers. A free radical scavenger, N-(2-mercaptopropionyl)glycine, also blocked CPT protection. We propose CPT targets PKG, which activates PKC through mitochondrial K(ATP) channel (mitoKATP)-dependent redox signaling, a sequence mimicking that already documented in preconditioning. Activated PKC then augments sensitivity of normally low-affinity cardiac adenosine A2b receptors so endogenous adenosine can protect by activating Akt and ERK.  相似文献   

11.
The objective of the present study was to investigate the role of delta(1)-opioid receptors in mediating cardioprotection in isolated chick cardiac myocytes and to investigate whether protein kinase C and mitochondrial ATP-sensitive K(+) (K(ATP)) channels act downstream of the delta(1)-opioid receptor in mediating this beneficial effect. A 5-min preexposure to the selective delta(1)-opioid receptor agonist (-)-TAN-67 (1 microM) resulted in less myocyte injury during the subsequent prolonged ischemia compared with untreated myocytes. 7-Benzylidenenaltrexone, a selective delta(1)-opioid receptor antagonist, completely blocked the cardioprotective effect of (-)-TAN-67. Naltriben methanesulfonate, a selective delta(2)-opioid receptor antagonist, had only a slight inhibitory effect on (-)-TAN-67-mediated cardioprotection. Nor-binaltorphimine dihydrochloride, a kappa-opioid receptor antagonist, did not affect (-)-TAN-67-mediated cardioprotection. The protein kinase C inhibitor chelerythrine and the K(ATP) channel inhibitors glibenclamide, a nonselective K(ATP) antagonist, and 5-hydroxydecanoic acid, a mitochondrial selective K(ATP) antagonist, reversed the cardioprotective effect of (-)-TAN-67. These results suggest that the delta(1)-opioid receptor is present on cardiac myocytes and mediates a potent cardioprotective effect via protein kinase C and the mitochondrial K(ATP) channel.  相似文献   

12.
T M Palmer  G L Stiles 《Biochemistry》1999,38(45):14833-14842
Activation of the A(2A) adenosine receptor (A(2A)AR) contributes to the neuromodulatory and neuroprotective effects of adenosine in the central nervous system. Here we demonstrate that, in rat C6 glioma cells stably expressing an epitope-tagged canine A(2A)AR, receptor phosphorylation on serine and threonine residues can be increased by pretreatment with either the synthetic protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or endothelin 1, which increases PKC activity via binding to endogenous endothelin(A) receptors. Under conditions in which PMA was maximally effective, activation of other second messenger-regulated kinases was without effect. While basal and PMA-stimulated phosphorylation were unaffected by the A(2A)AR-selective antagonist ZM241385, they were both blocked by GF109203X (a selective inhibitor of conventional and novel PKC isoforms) and rottlerin (a PKCdelta-selective inhibitor) but not Go6976 (selective for conventional PKC isoforms). However, coexpression of the A(2A)AR with each of the alpha, betaI, and betaII isoforms of PKC increased basal and PMA-stimulated phosphorylation. Mutation of the three consensus PKC phosphorylation sites within the receptor (Thr298, Ser320, and Ser335) to Ala failed to inhibit either basal or PMA-stimulated phosphorylation. In addition, phosphorylation of the receptor was not associated with detectable changes in either its signaling capacity or cell surface expression. These observations suggest that multiple PKC isoforms can stimulate A(2A)AR phosphorylation via activation of one or more downstream kinases which then phosphorylate the receptor directly. In addition, it is likely that phosphorylation controls interactions with regulatory proteins distinct from those involved in the classical cAMP signaling pathway utilized by this receptor.  相似文献   

13.
Ca2+-sensitive K+ channels (IK1 channels) are required for many physiological functions such as cell proliferation, epithelial transport or cell migration. They are regulated by the intracellular Ca2+ concentration and by phosphorylation-dependent reactions. Here, we investigate by means of the patch-clamp technique mechanisms by which protein kinase C (PKC) regulates the canine isoform, cIK1, cloned from transformed renal epithelial (MDCK-F) cells. cIK1 elicits a K+-selective, inwardly rectifying, and Ca2+-dependent current when expressed in HEK293 or CHO cells. It is inhibited by charybdotoxin, clotrimazole, and activated by 1-ethyl-2-benzimidazolone. cIK1 is activated by intracellular application of ATP or ATP[gS]. ATP-dependent activation is reversed by PKC inhibitors (bisindolylmaleimide, calphostin C), while stimulation with ATP[gS] resists PKC inhibition. Stimulation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) leads to the acute activation of cIK1 currents, which are blocked by PKC inhibitors. In contrast, PKC depletion by overnight incubation with PMA prevents ATP-dependent cIK1 activation. Neither single mutations nor the simultaneous mutation of all PKC sites (T101, S178, T329) to alanine alter the acute regulation of cIK1 channels by PKC. However, current amplitudes of CIK1-T329A and the triple mutant are dramatically increased upon long-term treatment with PMA. These mutations thereby disclose an inhibitory effect on cIKl current of the PKC site at T329. Our results indicate that cIK1 channel activity is regulated in two ways. PKC-dependent activation of cIK1 channels occurs indirectly, while the inhibitory effect probably requires a direct interaction with the channel protein.  相似文献   

14.
肾上腺髓质素对豚鼠心室肌细胞L-型钙通道的调制   总被引:1,自引:0,他引:1  
Du YM  Tang M  Liu CJ  Luo HY  Hu XW 《生理学报》2002,54(6):479-484
应用全细胞膜片钳技术研究了肾上腺髓质素 (ADM )对豚鼠心室肌细胞L 型钙电流 (ICa ,L)的影响及其信号传导机制。结果发现 :ADM ( 1~ 10 0nmol/L)浓度依赖性抑制ICa,L(P <0 0 5 ) ,并可被ADM特异受体阻断剂ADM2 2 52 ( 10 0nmol/L)完全阻断。用蛋白激酶A特异拮抗剂H 89( 10 μmol/L)预处理 ,对ADM抑制ICa ,L的作用无影响。但用蛋白激酶C (PKC)特异性拮抗剂PKC19 36 预处理 ,可完全阻断ADM的抑制效应 ;而PKC特异性激动剂PMA则可以模仿ADM的抑制效应 (P <0 0 5 )。上述结果提示 :ADM作用于特异性ADM受体可浓度依赖性地抑制豚鼠心室肌细胞ICa ,L,而此作用可能是PKC介导的。  相似文献   

15.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

16.
Protein kinase C inhibits Kv1.1 potassium channel function   总被引:3,自引:0,他引:3  
The regulation by protein kinase C (PKC) of recombinantvoltage-gated potassium (K) channels in frog oocytes was studied. Phorbol 12-myristate 13-acetate (PMA; 500 nM), an activator of PKC,caused persistent and large (up to 90%) inhibition of mouse, rat, andfly Shaker K currents. K currentinhibition by PMA was blocked by inhibitors of PKC, and inhibition wasnot observed in control experiments with PMA analogs that do notactivate PKC. However, site-directed substitution of potential PKCphosphorylation sites in the Kv1.1 protein did not prevent currentinhibition by PMA. Kv1.1 current inhibition was also not accompanied bychanges in macroscopic activation kinetics or in theconductance-voltage relationship. In Western blots, Kv1.1 membraneprotein was not significantly reduced by PKC activation. The injectionof oocytes with botulinum toxin C3 exoenzyme blocked the PMA inhibitionof Kv1.1 currents. These data are consistent with the hypothesis thatPKC-mediated inhibition of Kv1.1 channel function occurs by a novelmechanism that requires a C3 exoenzyme substrate but does not alterchannel activation gating or promote internalization of the channel protein.

  相似文献   

17.
蛋白激酶C对大鼠支气管平滑肌KV通道的影响   总被引:11,自引:5,他引:11  
Liu XS  Xu YJ  Zhang ZX  Ni W  Chen SX 《生理学报》2003,55(2):135-141
用全细胞膜片钳、Western印迹法和逆转录—PCR技术,观察蛋白激酶C(protein kinase C,PKC)对大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)电压依赖性延迟整流钾通道(Kv)活性及其亚型Kvl.5表达的影响。结果为:(1)PKC激活剂豆蔻酰佛波醇乙酯(phorbol 12-myristate 13-acetate,PMA)显著抑制急性分离大鼠BSMCs的Kv通道电流,该效应被PKC阻断剂Ro31—8220显著抑制;(2)PMA显著抑制体外培养大鼠BSMCs的Kvl.5 mRNA和蛋白质的表达,该效应被Ro31—8220显著抑制。上述观察结果提示,PKC活化可抑制大鼠BSMCs的Kv通道电流活性,下调Kvl.5亚型的表达水平。  相似文献   

18.
The role of adenosine on regulation of the (Na(+)+K(+))ATPase activity present in the Malpighian tubules isolated from Rhodnius prolixus was investigated. Adenosine decreases the (Na(+)+K(+)) ATPase specific activity by 88%, in a dose-dependent manner, with maximal effect at a concentration of 10(-9) M. This effect was mimicked by N(6)-cyclohexyladenosine (CHA) at 10(-8) M, an agonist for A(1) adenosine receptor, and was reversed by 10(-9) M 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an antagonist for A(1) adenosine receptor. On the other hand, 5'-N-ethyl-carboxamide adenosine (NECA), an agonist for A(2) adenosine receptor, used in the range of 10(-9)-10(-5) M, did not change the (Na(+)+K(+))ATPase specific activity. In the same way, 10(-8) M 3, 7-dimethyl-1-propargylxanthine (DMPX), an antagonist for A(2) adenosine receptor, did not modify the inhibitory effect of adenosine. These data suggest that the inhibitory effect of adenosine on the (Na(+)+K(+))ATPase specific activity present in Malpighian tubules from Rhodnius prolixus is mediated by A(1) adenosine receptor activation. Arch.  相似文献   

19.
Obata T 《Life sciences》2002,71(18):2083-2103
Adenosine exerts cardioprotective effects on the ischemic myocardium. A flexibly mounted microdialysis probe was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase (a key enzyme responsible for adenosine production) in in vivo rat hearts. The level of adenosine during perfusion of adenosine 5'-adenosine monophosphate (AMP) was given as an index of the activity of ecto-5'-nucleotidase in the tissue. Endogenous norepinephrine (NE) activates both alpha(1)-adrenoceptors and protein kinase C (PKC), which, in turn, activates ecto-5'-nucleotidase via phosphorylation thereby enhancing the production of interstitial adenosine. Histamine-release NE activates PKC, which increased ecto-5'-nucleotidase activity and augmented release of adenosine. Opening of cardiac ATP sensitive K(+) (K(ATP)) channels may cause hydroxyl radical (.OH) generation through NE release. Lysophosphatidylcholine (LPC), an endogenous amphiphiphilic lipid metabolite, also increases the concentration of interstitial adenosine in rat hearts, through the PKC-mediated activation of endogenous ecto-5'-nucleotidase. Nitric oxide (NO) facilitates the production of interstitial adenosine, via guanosine 3',5'-cyclic monophosphate (cGMP)-mediated activation of ecto-5'-nucleotidase as another pathway. These mechanisms play an important role in high sensitivity of the cardiac adenosine system. Adenosine plays an important role as a modulator of ischemic reperfusion injury, and that the production and mechanism of action of adenosine are linked with NE release.  相似文献   

20.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号