首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Susceptibility baselines and diagnostic doses of the technical grade insecticides deltamethrin, permethrin, fenitrothion, and propoxur were established based on Aedes aegypti (L.), Bora (French Polynesia), a reference susceptible strain. Field-collected Aedes mosquitoes from each part of Thailand were subjected to bioassay for their susceptibility to the diagnostic doses of each insecticide. Almost all Ae. aegypti collected were incipient resistant or resistant to deltamethrin and permethrin, except those from some areas of Songkhla (southern) and Phan district of Chiang Rai (northern) province. Susceptibility to fenitrothion was found in mosquitoes from Bangkok (central), Chonburi (eastern), Chiang Rai, Kanchanaburi (western), and Songkhla, whereas they were resistant in almost all areas of Nakhon Sawan (north central) and Nakhon Ratchasima (northeastern) provinces. Most of Ae. aegypti were susceptible to propoxur except those from Mae Wong, Nakhon Sawan province. Various levels of insecticide resistance and susceptibility in adjacent areas revealed a focal susceptible/resistance profile in the country. It could be noted that almost all of Ae. albopictus were susceptible to the insecticides tested at the same diagnostic doses. In conclusion, resistance to pyrethroids (permethrin and deltamethrin) has developed in Ae. aegypti in most of the collected areas, suggesting that an alternative choice of insecticide or other control measures should be applied.  相似文献   

2.
Glutathione transferases (GSTs) play a central role in the detoxification of xenobiotics such as insecticides and elevated GST expression is an important mechanism of insecticide resistance. In the mosquito, Anopheles gambiae, increased expression of an Epsilon class GST, GSTE2, confers resistance to DDT. We have identified eight GST genes in the dengue vector, Aedes aegypti. Four of these belong to the insect specific GST classes Delta and Epsilon and three are from the more ubiquitously distributed Theta and Sigma classes. The expression levels of the two Epsilon genes, a Theta GST and a previously identified Ae. aegypti GST [Grant and Hammock, 1992. Molecular and General Genetics 234, 169-176] were established for an insecticide susceptible and a resistant strain. We show that the putative ortholog of GSTe2 in Ae. aegypti (AaGSTe2) is over expressed in mosquitoes that are resistant to the insecticides DDT and permethrin. Characterisation of recombinant AaGSTE2-2 confirmed the role of this enzyme in DDT metabolism. In addition, unlike its Anopheles ortholog, AaGSTE2-2 also exhibited glutathione peroxidase activity.  相似文献   

3.
Thirty‐two Aedes aegypti populations collected throughout Thailand and five populations of Aedes albopictus from southern Thailand were subjected to standard WHO contact bioassays to assess susceptibility to three commonly used synthetic pyrethroids: permethrin, deltamethrin, and lambda‐cyhalothrin. A wide degree of physiological response to permethrin was detected in Ae. aegypti, ranging from 56.5% survival (Lampang, northern Thailand) to only 4% (Kalasin in northeastern and Phuket in southern Thailand). All 32 populations of Ae. aegypti were found to have evidence of incipient resistance (62.5%) or levels of survival deemed resistant (37.5%) to permethrin. Four populations of Ae. albopictus were found with incipient resistance (97 – 80% mortality) and one with resistance (< 80%) to permethrin. The majority of Ae. aegypti populations (68.7%) was susceptible (> 98% mortality) to deltamethrin, with incipient resistance (observed 97–82% mortality) in other localities. In contrast, all populations of Ae. aegypti were completely susceptible (100% mortality) to the recommended operational dosage of lambda‐cyhalothrin. All five populations of Ae. albopictus were found completely susceptible to both deltamethrin and lambda‐cyhalothrin. Evidence of defined incipient or resistance to synthetic pyrethroids mandates appropriate response and countermeasures to mitigate further development and spread of resistance. In light of these findings, we conclude that routine and comprehensive susceptibility monitoring of dengue mosquito vectors to synthetic pyrethroids should be a required component of resistance management policies and disease control activities.  相似文献   

4.
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.  相似文献   

5.
Standard WHO insecticide bioassay tests were carried out in Gorgora, northern Ethiopia to evaluate the susceptibility status of Anopheles pharoensis Theobald for the insecticides DDT, malathion, permethrin and deltamethrin. The mortality and when appropriate knockdown effect of the insecticides were observed. The results indicated that this species was resistant to DDT. A high mortality was obtained after exposure to permethrin and deltamethrin but below 97 % which is the limit for susceptibility according to WHO. A prolonged knockdown time was noted for DDT and the two pyrethroids. An. phoaroensis was found to be susceptible to malathion.  相似文献   

6.

Background

Control of Aedes aegypti, the mosquito vector of dengue, chikungunya and yellow fever, is a challenging task. Pyrethroid insecticides have emerged as a preferred choice for vector control but are threatened by the emergence of resistance. The present study reports a focus of pyrethroid resistance and presence of two kdr mutations—F1534C and a novel mutation T1520I, in Ae. aegypti from Delhi, India.

Methodology/Principal Findings

Insecticide susceptibility status of adult-female Ae. aegypti against DDT (4%), deltamethrin (0.05%) and permethrin (0.75%) was determined using WHO''s standard insecticide susceptibility kit, which revealed resistance to DDT, deltamethrin and permethrin with corrected mortalities of 35%, 72% and 76% respectively. Mosquitoes were screened for the presence of kdr mutations including those reported earlier (I1011V/M, V1016G/I, F1534C, D1794Y and S989P), which revealed the presence of F1534C and a novel mutation T1520I. Highly specific PCR-RFLP assays were developed for genotyping of these two mutations. Genotyping using allele specific PCR and new PCR-RFLP assays revealed a high frequency of F1534C (0.41–0.79) and low frequency of novel mutation T1520I (0.13). The latter was observed to be tightly linked with F1534C and possibly serve as a compensatory mutation. A positive association of F1534C mutation with DDT and deltamethrin resistance in Ae. aegypti was established. However, F1534C-kdr did not show significant protection against permethrin.

Conclusions/Significance

The Aedes aegypti population of Delhi is resistant to DDT, deltamethrin and permethrin. Two kdr mutations, F1534C and a novel mutation T1520I, were identified in this population. This is the first report of kdr mutations being present in the Indian Ae. aegypti population. Highly specific PCR-RFLP assays were developed for discrimination of alleles at both kdr loci. A positive association of F1534C mutation with DDT and deltamethrin resistance was confirmed.  相似文献   

7.
Aedes albopictus larvae obtained from different types of agricultural and non-agricultural localities in Peninsular Malaysia were subjected to several larvicides at World Health Organization (WHO) recommended dosages. Upon 24 h of WHO larval bioassay using two organochlorines and six organophosphates, high resistance against dichlorodiphenyltrichloroethane (DDT), temephos, chlorpyrifos and bromophos were demonstrated among all larval populations. Aedes albopictus larvae from both paddy growing areas (92.33% mortality) and rubber estates (97.00% mortality) were moderately resistant to dieldrin while only Ae. albopictus larvae from dengue prone residential areas (89.00% mortality) showed high resistance against dieldrin. All Ae. albopictus larval populations also developed either incipient or high resistance to both malathion (33.67%–95.33% mortality) and fenitrothion (73.00%–92.67% mortality). Only Ae. albopictus larvae from fogging-free residential areas that were tolerant to fenthion (97.33% mortality), whereas Ae. albopictus larvae from dengue prone residential areas were highly resistant to the same organophosphate (88.33% mortality). Cross resistance between intraclass and interclass larvicides of organochlorines and organophosphates were also exhibited in this study. The present study provided baseline data on various susceptibility levels of Ae. albopictus larval populations from different types of agricultural and non-agricultural localities against organochlorines and organophosphates at WHO recommended dosages. Nevertheless, further susceptibility investigations are suggested using revised doses of larvicides established from the local reference strain of Ae. albopictus to prevent the underestimation or overestimation of insecticide resistance level among Ae. albopictus field strains of larvae.  相似文献   

8.
G Yan  D D Chadee  D W Severson 《Genetics》1998,148(2):793-800
Information on genetic variation within and between populations is critical for understanding the evolutionary history of mosquito populations and disease epidemiology. Previous studies with Drosophila suggest that genetic variation of selectively neutral loci in a large fraction of genome may be constrained by fixation of advantageous mutations associated with hitchhiking effect. This study examined restriction fragment length polymorphisms of four natural Aedes aegypti mosquito populations from Trinidad and Tobago, at 16 loci. These populations have been subjected to organophosphate (OP) insecticide treatments for more than two decades, while dichlor-diphenyltrichlor (DDT) was the insecticide of choice prior to this period. We predicted that genes closely linked to the OP target loci would exhibit reduced genetic variation as a result of the hitchhiking effect associated with intensive OP insecticide selection. We also predicted that genetic variability of the genes conferring resistance to DDT and loci near the target site would be similar to other unlinked loci. As predicted, reduced genetic variation was found for loci in the general chromosomal region of a putative OP target site, and these loci generally exhibited larger F(ST) values than other random loci. In contrast, the gene conferring resistance to DDT and its linked loci show polymorphisms and genetic differentiation similar to other random loci. The reduced genetic variability and apparent gene deletion in some regions of chromosome 1 likely reflect the hitchhiking effect associated with OP insecticide selection.  相似文献   

9.
The development of insecticide resistance is a threat to the control of malaria in Africa. We report the findings of a national survey carried out in Tanzania in 2011 to monitor the susceptibility of malaria vectors to pyrethroid, organophosphate, carbamate and DDT insecticides, and compare these findings with those identified in 2004 and 2010. Standard World Health Organization (WHO) methods were used to detect knock‐down and mortality rates in wild female Anopheles gambiae s.l. (Diptera: Culicidae) collected from 14 sentinel districts. Diagnostic doses of the pyrethroids deltamethrin, lambdacyhalothrin and permethrin, the carbamate propoxur, the organophosphate fenitrothion and the organochlorine DDT were used. Anopheles gambiae s.l. was resistant to permethrin in Muleba, where a mortality rate of 11% [95% confidence interval (CI) 6–19%] was recorded, Muheza (mortality rate of 75%, 95% CI 66–83%), Moshi and Arumeru (mortality rates of 74% in both). Similarly, resistance was reported to lambdacyhalothrin in Muleba, Muheza, Moshi and Arumeru (mortality rates of 31–82%), and to deltamethrin in Muleba, Moshi and Muheza (mortality rates of 28–75%). Resistance to DDT was reported in Muleba. No resistance to the carbamate propoxur or the organophosphate fenitrothion was observed. Anopheles gambiae s.l. is becoming resistant to pyrethoids and DDT in several parts of Tanzania. This has coincided with the scaling up of vector control measures. Resistance may impair the effectiveness of these interventions and therefore demands close monitoring and the adoption of a resistance management strategy.  相似文献   

10.
Laboratory tests were conducted to determine the feasibility of making the mosquito ovitrap lethal to Aedes aegypti (L.) when they attempt to oviposit in the trap. Heavy-weight velour paper strips (2.54 x 11 cm) were used as an alternative to the wooden paddle normally provided as a substrate for mosquito oviposition. The paper strips were pretreated with insecticide solutions and allowed to dry before being used in oviposition cups of 473 ml capacity, filled with water initially to within 2.5 cm of the brim. Insecticides chosen for their quick knock-down efficacy were bendiocarb 76% WP (1.06 mg a.i./strip) and four pyrethroids: permethrin 25% WP (0.16 mg a.i./strip), deltamethin 4.75% SC (0.87 mg a.i./strip), cypermethrin 40% WP (2.81 mg a.i./strip), and cyfluthrin 20% WP (0.57 mg a.i./ strip). For experimental evaluation, two oviposition cups (one with an insecticide-treated strip and one with an untreated strip) were placed in cages (cubic 30 cm) with gravid female Ae. aegypti mosquitoes (aged 6-8 days) from a susceptible laboratory strain. Mortality-rates of female mosquitoes were 45% for bendiocarb, 47% for permethrin, 98% for deltamethrin, 100% for cypermethrin, and 100% for cyfluthrin. Young instar larvae added to the treated cups died within 2h. After water evaporation from the cups for 38 days, fresh mosquito females had access to previously submerged portions of the velour paper paddle, and mortality rates of 59% or more occurred. Cups that had water (360 ml) dripped into them, to simulate rain, produced female mosquito mortality rates of > 50% and all larvae died within 3 h of being added. These tests demonstrate that the ovitrap can be made lethal to both adults and larvae by insecticidal treatment of the ovistrip. Field efficacy trials are underway in Brazil to access the impact of this simple, low-cost, environmentally benign approach on populations of the dengue vector Ae. aegypti.  相似文献   

11.
BackgroundIn Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance.Method and resultsThe insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species.ConclusionThe present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.  相似文献   

12.
The insecticide resistance status of Culex quinquefasciatus Say (Diptera: Culicidae) to DDT and deltamethrin across army cantonments and neighbouring villages in northeastern India was investigated. In India, DDT is still the insecticide of choice for public health programmes. In military stations, pyrethroids, especially deltamethrins, are used for insecticide‐treated nets (ITNs). Recent information on the levels of resistance to DDT and deltamethrin in mosquito populations of northeastern India is scare. Continued monitoring of insecticide resistance status, identification of the underlying mechanisms of resistance in local mosquito populations and the establishment of a baseline data bank of this information are of prime importance. Insecticide susceptibility assays were performed on wild‐caught adult female Cx. quinquefasciatus mosquitoes to the discriminating doses recommended by the World Health Organisation (WHO) to DDT (4%) and deltamethrin (0.05%). Across all study sites, mortality as a result of DDT varied from 11.9 to 50.0%, as compared with 91.2% in the susceptible laboratory strain (S‐Lab), indicating that Cx. quinquefasciatus is resistant to DDT. The species was found to be 100% susceptible to deltamethrin in all study sites except Benganajuli and Rikamari. Knock‐down times (KDT) in response to deltamethrin varied significantly between study sites (P < 0.01) from 8.3 to 17.8 min for KDT50 and 37.4 to 69.5 min for KDT90. All populations exceeded the threshold level of alpha‐esterase, beta‐esterase and glutathion S‐transferase (GST) established for the S‐Lab susceptible strain, and all populations had 100% elevated esterase and GST activity, except Missamari and Solmara. Beta‐esterase activity in Field Unit II (96.9%) was less than in any of the other populations. Benganajuli had the highest activity level for all the enzymes tested. There was a significant correlation between all enzyme activity levels and insecticide resistance phenotype by populations (P < 0.05). The results presented here provide the first report and baseline information of the insecticide resistance status of Cx. quinquefasciatus in northeastern India, and associated information about biochemical mechanisms that are essential for monitoring the development of insecticide resistance in the area.  相似文献   

13.
Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost.  相似文献   

14.
The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides.  相似文献   

15.

Background

Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations.

Methodology/Principal Findings

To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments.

Conclusions/Significance

This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.  相似文献   

16.

Background

Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.

Methodology/Principal Findings

Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid).

Conclusions/Significance

ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.  相似文献   

17.
18.
The Epsilon glutathione transferase (GST) class in the dengue vector Aedes aegypti consists of eight sequentially arranged genes spanning 53,645 bp on super contig 1.291, which maps to chromosome 2. One Epsilon GST, GSTE2, has previously been implicated in conferring resistance to DDT. The amino acid sequence of GSTE2 in an insecticide susceptible and a DDT resistant strain differs at five residues two of which occur in the putative DDT binding site. Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide. GSTe2 and two additional Epsilon GST genes, GSTe5 and GSTe7, are expressed at elevated levels in the resistant population and the recombinant homodimer GSTE5-5 also exhibits low levels of DDT dehydrochlorinase activity. Partial silencing of either GSTe7 or GSTe2 by RNA interference resulted in an increased susceptibility to the pyrethroid, deltamethrin suggesting that these GST enzymes may also play a role in resistance to pyrethroid insecticides.  相似文献   

19.
Role of mono-oxygenases as a mechanism of resistance to the synthetic pyrethroid, deltamethrin in the larvae of Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi Liston developed by laboratory selections with deltamethrin, DDT or deltamethrin and the synergist, piperonyl butoxide (PBO) in the ratio of 1:5, was investigated. There was a significant correlation with mono-oxygenase activity and larval LC50 to deltamethrin in various strains of all the three species. In addition, the activity of glucose-6-phosphate dehydrogenase (G6PD), the main NADPH generating enzyme for mono-oxygenases, also showed enhanced activity in deltamethrin and DDT-selected strains. The present data, therefore, clearly suggest that deltamethrin resistance in the larvae of Cx. quinquefasciatus, Ae. aegypti and An. stephensi is mainly due to the detoxification of deltamethrin by microsomal mono-oxygenases. High activity of G6PD observed in DDT-selected strains seems to be related to its role as a rate-limiting enzyme in GSH-dependent dehydrochlorination of DDT.  相似文献   

20.
The seasonal prevalence and vertical distribution of oviposition of Aedes aegypti were studied for 53 wk in 1999--2000 using modified ovitraps located at several elevations. The ovitraps were positioned both indoors and outdoors in high-rise apartments in the urban township of John John, Port of Spain, Trinidad, West Indies. Of 988 ovitraps, 490 were collected during the months of the wet season, with 404 (84.4%) positive with 18,536 Ae. aegypti eggs. Of 498 ovitraps collected during the dry season, 335 (67.3%) were positive with 12,255 Ae. aegypti eggs. Data from different elevations showed that significantly more eggs were collected at 13-24 m elevations than any other elevation. The results suggest that the invasion of high rise ecosystems by Ae. aegypti can enhance transmission of dengue. This ecological shift in the Ae. aegypti population exploited new habitats associated with human activity, suggesting that strategies should be developed to educate householders as well as creating appropriate vector control measures to prevent future threats of dengue transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号