首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thioredoxin reductases (Txnrd) maintain intracellular redox homeostasis in most organisms. Metazoan Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1-/- cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated that primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd-/- and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however, mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells.  相似文献   

2.
3.
The hypophyseal pars tuberalis surrounds the median eminence and infundibular stalk of the hypothalamus as thin layers of cells. The pars tuberalis expresses MT1 melatonin receptor and participates in mediating the photoperiodic secretion of pituitary hormones. Both the rostral tip of Rathke’s pouch (pars tuberalis primordium) and the pars tuberalis expressed αGSU mRNA, and were immunoreactive for LH, chromogranin A, and TSHβ in mice. Hes genes control progenitor cell differentiation in many embryonic tissues and play a crucial role for neurulation in the central nervous system. We investigated the Hes1 function in outgrowth and differentiation of the pars tuberalis by using the markers for the pars tuberalis. In homozygous Hes1 null mutant embryos, the rostral tip was formed in the basal-ventral part of Rathke’s pouch at embryonic day (E)11.5 as well as in wild-type embryos. In contrast to the wild-type, the rostral tip of null mutants could not extend rostrally with age; it remained in the low extremity of Rathke’s pouch during E12.5–E13.5 and disappeared at E14.5, resulting in lack of the pars tuberalis. Development of the ventral diencephalon was impaired in the null mutants at early stages. Rathke’s pouch, therefore, could not link with the nervous tissue and failed to receive inductive signals from the diencephalon. In a very few mutant mice in which the ventral diencephalon was partially sustained, some pars tuberalis cells were distributed around the hypoplastic infundibulum. Thus, Hes1 is required for development of the pars tuberalis and its growth is dependent on the ventral diencephalon.  相似文献   

4.
Dad1 has been shown to play a role in preventing apoptotic cell death and in regulating levels of N-linked glycosylation in Saccharomyces cerevisiae and the BHK hamster cell line. To address the in vivo role of Dad1 in these processes during multicellular development, we have analyzed mice carrying a null allele for Dad1. Embryos homozygous for this mutation express abnormal N-glycosylated proteins and are developmentally delayed by embryonic day 7.5. Such mutants exhibit aberrant morphology, impaired mesodermal development, and increased levels of apoptosis in specific tissues. These defects culminate in homozygous embryos failing to turn the posterior axis and subsequent lethality by embryonic day 10.5. Thus, Dad1 is required for proper processing of N-linked glycoproteins and for certain cell survival in the mouse.  相似文献   

5.
The lack of the Hes1 gene leads to the failure of cranial neurulation due to the premature onset of neural differentiation. Hes1 homozygous null mutant mice displayed a neural tube closure defect, and exencephaly was induced at the mid/hindbrain boundary. In the mutant mesencephalon, the roof plate was not formed and therefore the ventricular zone showing cell proliferation was displaced to the brain surface. Furthermore, the telencephalon and ventral diencephalon were defective. Despite the severe defects of neurogenesis in null mutants, the mesencephalic dopaminergic (mesDA) neurons were specified at the midline of the ventral mesencephalon in close proximity to two important signal centers — floor plate and mid/hindbrain boundary (i.e., the isthmic organizer). Using mesDA neuronal markers, tyrosine hydroxylase (TH) and Pitx3, the development of mesDA neurons was studied in Hes1 null mice and compared with that in the wild type. At early stages, between embryonic day (E) 11.5 and E12.5, mesDA neurons were more numerous in null mutants than in the wild type. From E13.5 onward, however, the cell number and fiber density of mesDA neurons were decreased in the mutants. Their distribution pattern was also different from that of the wild type. In particular, mesDA neurons grew dorsally and invaded the rostral hindbrain. 5-HT neurons were also ectopically located in the mutant midbrain. Thus, the loss of Hes1 resulted in disturbances in the inductive and repulsive activities of the isthmic organizer. It is proposed that Hes1 plays a role in regulating the location and density of mesDA neurons.  相似文献   

6.
7.
8.
The semaphorins are a large family of proteins involved in the patterning of both the vascular and the nervous systems. In order to analyze the function of the membrane-bound semaphorin 5A (Sema5A), we generated mice homozygous for a null mutation in the Sema5a gene. Homozygous null mutants die between embryonic development days 11.5 (E11.5) and E12.5, indicating an essential role of Sema5A during embryonic development. Mutant embryos did not show any morphological defects that could account for the lethality of the mutation. A detailed analysis of the vascular system uncovered a role of Sema5A in the remodeling of the cranial blood vessels. In Sema5A null mutants, the complexity of the hierarchically organized branches of the cranial cardinal veins was decreased. Our results represent the first genetic analysis of the function of a class 5 semaphorin during embryonic development and identify a role of Sema5A in the regional patterning of the vasculature.  相似文献   

9.
10.
11.
Bulging medial edge epithelial cells and palatal fusion   总被引:2,自引:0,他引:2  
The surface of the medial edge epithelium of embryonic day 12, 13 and 14 mouse palatal shelves was observed utilising Environmental Scanning Electron Microscopy (ESEM). This technique offers the advantage of visualisation of biological samples after short fixation times in their natural hydrated state. Bulging epithelial cells were observed consistently on the medial edge epithelium prior to palatal shelf fusion. Additionally, we have used ESEM to compare the morphology and surface features of palatal shelves from embryonic day 13 to 16 mouse embryos that are homozygous null (TGF-beta3 -/-), heterozygous (TGF-beta3 +/-) or homozygous normal (TGF-beta3 +/+) for transforming growth factor beta-3 (TGF-beta3). At embryonic day 15 and 16 most TGF-beta3 +/- and +/+ embryos showed total palatal fusion, whilst all TGF-beta3 null mutants had cleft palate: the middle third of the palatal shelves had adhered, leaving an anterior and posterior cleft. From embryonic day 14 to 16 abundant cells were observed bulging on the medial edge epithelial surface of palates from the TGF-beta3 +/- and +/+ embryos. However, they were never seen in the TGF-beta3 null embryos, suggesting that these surface bulges might be important in palatal fusion and that their normal differentiation is induced by TGF-beta3. The expression pattern of E-Cadherin, beta-catenin, chondroitin sulphate proteoglycan, beta-Actin and vinculin as assayed by immunocytochemistry in these cells shows specific variations that suggest their importance in palatal shelf adhesion.  相似文献   

12.
Zhou X  Takatoh J  Wang F 《PloS one》2011,6(1):e16358
The Pik3c3 gene encodes an 887 amino acid lipid kinase, phosphoinositide-3-kinase class 3 (PIK3C3). PIK3C3 is known to regulate various intracellular membrane trafficking events. However, little is known about its functions during early embryogenesis in mammals. To investigate the function of PIK3C3 in vivo, we generated Pik3c3 null mice. We show here that Pik3c3 heterozygous are normal and fertile. In contrast, Pik3c3 homozygous mutants are embryonic lethal and die between E7.5 and E8.5 of embryogenesis. Mutant embryos are poorly developed with no evidence of mesoderm formation, and suffer from severely reduced cell proliferations. Cell proliferation defect is also evident in vitro, where mutant blastocysts in culture fail to give rise to typical colonies formed by inner cell mass. Electron microscopic analysis revealed that epiblast cells in mutant embryos appear normal, whereas the visceral endoderm cells contain larger vesicles inside the lipid droplets. Finally, we provide evidence that mTOR signaling is drastically reduced in Pik3c3 null embryos, which could be a major contributor to the observed proliferation and embryogenesis defects.  相似文献   

13.
14.
Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. We generated a Tid1 conditional mutation in mice, and the subsequent global removal of the Tid1 protein was achieved by crossing these conditional knockout mice with general deletor mice. No Tid1(-/-) embryos were detected as early as embryonic day 7.5 (E7.5). Nonetheless, Tid1-deficient blastocysts were viable, hatched, formed an inner cell mass and trophectoderm, and implanted (E4.5), suggesting that the homozygous mutant embryos die between E4.5 and E7.5. To assess the function of Tid1 in embryonic cells, mouse embryonic fibroblasts with the homologous Tid1 floxed allele were produced. Tid1 removal in these cells led to massive cell death. The death of Tid1-deficient cells could be rescued by ectopic expression of wild-type Tid1 but not by expression of the Tid1 protein that had a mutated J domain and was thus incapable of binding to Hsp70. We propose that Tid1 is critical for early mammalian development, most likely for its function in sustaining embryonic-cell survival, which requires its association with Hsp70.  相似文献   

15.
Mouse embryos homozygous for a null allele of Gpi1 fail to complete gastrulation and die around E7.5. We produced E12.5 chimeric mouse conceptuses, composed of wild-type and homozygous Gpi1m/m null mutant cells to test whether the presence of wild-type cells allowed mutant cells to survive and, if so, whether they survived better in some tissue locations than others. Fourteen homozygous Gpi1m/m<-->Gpi1c/c chimeras were identified and these contained low levels of homozygous mutant cells in most tissues tested. Homozygous Gpi1m/m cells contributed better to the yolk sac endoderm and placenta than to the epiblast derivatives tested (retinal pigment epithelium, brain, tail, amnion, and yolk sac mesoderm). The depletion of mutant cells confirms that the gene acts cell autonomously, but the GPI deficiency is not always cell-lethal. When mixed with wild-type cells in chimeras, homozygous mutant cells can differentiate into many different cell types and survive until at least E12.5.  相似文献   

16.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

17.
Polypyrimidine tract-binding protein 1 (PTBP1) and its brainspecific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1. [BMB Reports 2014; 47(4): 233-238]  相似文献   

18.
19.
Patients suffering from multiple endocrine neoplasia type 1 (MEN1) are predisposed to multiple endocrine tumors. The MEN1 gene product, menin, is expressed in many embryonic, as well as adult tissues, and interacts with several proteins in vitro and in vivo. However, the biological function of menin remains largely unknown. Here we show that disruption of the Men1 gene in mice causes embryonic lethality at E11.5-E13.5. The Men1 null mutant embryos appeared smaller in size, frequently with body haemorrhages and oedemas, and a substantial proportion of them showed disclosure of the neural tube. Histological analysis revealed an abnormal development of the nervous system and heart hypotrophy in some Men1 null embryos. Furthermore, Men1 null livers generally displayed an altered organization of the epithelial and hematopoietic compartments associated with enhanced apoptosis. Chimerism analysis of embryos generated by injection of Men1 null ES cells, showed that cells lacking menin do not seem to have a general cell-autonomous defect. However, primary Men1 null embryonic fibroblasts entered senescence earlier than their wild-type counterparts. Despite normal proliferation ability, Men1 null ES cells exhibited a deficiency to form embryoid bodies, suggesting an impaired differentiation capacity in these cells. The present study demonstrates that menin plays an important role in the embryonic development of multiple organs in addition to its proposed role in tumor suppression.  相似文献   

20.
The vacuolar-type ATPase (V-ATPase) is a proton pump composed of two sectors, the cytoplasmic V(1) sector that catalyzes ATP hydrolysis and the transmembrane V(o) sector responsible for proton translocation. The transmembrane V(o) complex directs the complex to different membranes, but also has been proposed to have roles independent of the V(1) sector. However, the roles of the V(1) sector have not been well characterized. In the nematode Caenorhabditis elegans there are two V(1) B-subunit genes; one of them, vha-12, is on the X chromosome, whereas spe-5 is on an autosome. vha-12 is broadly expressed in adults, and homozygotes for a weak allele in vha-12 are viable but are uncoordinated due to decreased neurotransmission. Analysis of a null mutation demonstrates that vha-12 is not required for oogenesis or spermatogenesis in the adult germ line, but it is required maternally for early embryonic development. Zygotic expression begins during embryonic morphogenesis, and homozygous null mutants arrest at the twofold stage. These mutant embryos exhibit a defect in the clearance of apoptotic cell corpses in vha-12 null mutants. These observations indicate that the V(1) sector, in addition to the V(o) sector, is required in exocytic and endocytic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号