首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MATalphacan1Delta::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MATalphacan1Delta::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1Delta::LEU2, while reversed irradiation only marginally increased LOH. In the rad51Delta background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52Delta background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.  相似文献   

2.
Coïc E  Feldman T  Landman AS  Haber JE 《Genetics》2008,179(1):199-211
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.  相似文献   

3.
The Rad51 protein has been shown to play a vital role in the DNA repair process. In humans, its interaction with proteins like BRCA1 and BRCA2 has provided an insight into the mechanism of how these molecules function as tumor suppressors. Several members of the Rad51-like family have been recently identified, including RAD51L2. This gene has been found to be amplified in breast tumors suggesting its role in tumor progression. Here, we describe the cloning of the murine homologue of the human RAD51L2/RAD51C gene. Sequence analysis has revealed that the murine Rad51l2 protein is 86% identical and 93% similar to its human homologue. In spite of such high sequence conservation, the murine protein lacks the first nine amino acids present in the human protein. We have cloned and confirmed the sequence of the 5' end of the murine Rad51l2 cDNA using 5' RACE technique as well as by sequencing the genomic region flanking the first exon of the murine Rad51l2 gene. Northern analysis shows that Rad51l2 is expressed in several adult tissues as well as in embryos at various developmental stages. The murine Rad51l2 gene maps to chromosome 11 and is located in the syntenic region of human chromosome 17q22-23, where the human RAD51L2 is present.  相似文献   

4.
5.
In the budding yeast Saccharomyces cerevisiae, the RAD52 gene is essential for all homologous recombination events and its homologue, the RAD59 gene, is important for those that occur independently of RAD51. Both Rad52 and Rad59 proteins can anneal complementary single-stranded (ss) DNA. We quantitatively examined the ssDNA annealing activity of Rad52 and Rad59 proteins and found significant differences in their biochemical properties. First, and most importantly, they differ in their ability to anneal ssDNA that is complexed with replication protein A (RPA). Rad52 can anneal an RPA-ssDNA complex, but Rad59 cannot. Second, Rad59-promoted DNA annealing follows first-order reaction kinetics, whereas Rad52-promoted annealing follows second-order reaction kinetics. Last, Rad59 enhances Rad52-mediated DNA annealing at increased NaCl concentrations, both in the absence and presence of RPA. These results suggest that Rad59 performs different functions in the recombination process, and should be more accurately viewed as a Rad52 paralogue.  相似文献   

6.
We have examined spontaneous, interchromosomal mitotic recombination events between his4 alleles in both Rad+ and rad52 strains of Saccharomyces cerevisiae. In Rad+ strains, 74% of the His+ prototrophs resulted from gene conversion events without exchange of flanking markers. In diploids homozygous for the rad52-1 mutation, the frequency of His+ prototroph formation was less than 5% of the wild-type value, and more than 80% of the gene conversion events were accompanied by an exchange of flanking markers. Most of the rad52 intragenic recombination events arose by gene conversion accompanied by an exchange of flanking markers and not by a simple reciprocal exchange between the his4A and his4C alleles. There were also profound effects on the kinds of recombinant products that were recovered. The most striking effect was that RAD52-independent mitotic recombination frequently results in the loss of one of the two chromosomes participating in the gene conversion event.  相似文献   

7.
Yoshida J  Umezu K  Maki H 《Genetics》2003,164(1):31-46
In previous studies of the loss of heterozygosity (LOH), we analyzed a hemizygous URA3 marker on chromosome III in S. cerevisiae and showed that homologous recombination is involved in processes that lead to LOH in multiple ways, including allelic recombination, chromosome size alterations, and chromosome loss. To investigate the role of homologous recombination more precisely, we examined LOH events in rad50 Delta, rad51 Delta, rad52 Delta, rad50 Delta rad52 Delta, and rad51 Delta rad52 Delta mutants. As compared to Rad(+) cells, the frequency of LOH was significantly increased in all mutants, and most events were chromosome loss. Other LOH events were differentially affected in each mutant: the frequencies of all types of recombination were decreased in rad52 mutants and enhanced in rad50 mutants. The rad51 mutation increased the frequency of ectopic but not allelic recombination. Both the rad52 and rad51 mutations increased the frequency of intragenic point mutations approximately 25-fold, suggesting that alternative mutagenic pathways partially substitute for homologous recombination. Overall, these results indicate that all of the genes are required for chromosome maintenance and that they most likely function in homologous recombination between sister chromatids. In contrast, other recombination pathways can occur at a substantial level even in the absence of one of the genes and contribute to generating various chromosome rearrangements.  相似文献   

8.
Candida albicans is a human fungal pathogen and has been extensively studied because of its clinical importance. Comprehensive gene analyses have, however, made little progress. This is because of the diploid and asexual characteristics of the fungus that hamper gene disruptions. In this study, we found that ultraviolet (UV) irradiation, as well as mutagen treatment, strongly stimulated loss of heterozygosity (LOH) in strains harboring artificially constructed heterozygosity. UV-induced LOH occurred more frequently in cells within the logarithmic phase of growth compared to those within the stationary phase of growth. This was observed at all loci tested on chromosome 7, except for a locus neighboring the centromere. C. albicans RAD52, whose orthologue in Saccharomyces cerevisiae was reported to be involved in DNA repair by homologous recombination, was shown to be required for UV-induced LOH. These results suggest that high efficiency LOH caused by UV irradiation could be a prominent tool for gene analyses in C. albicans.  相似文献   

9.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

10.
P Cejka  V Vondrejs  Z Storchová 《Genetics》2001,159(3):953-963
The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.  相似文献   

11.
Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains.  相似文献   

12.
Yeast rad51 mutants are viable, but extremely sensitive to gamma-rays due to defective repair of double-strand breaks. In contrast, disruption of the murine RAD51 homologue is lethal, indicating an essential role of Rad51 in vertebrate cells. We generated clones of the chicken B lymphocyte line DT40 carrying a human RAD51 transgene under the control of a repressible promoter and subsequently disrupted the endogenous RAD51 loci. Upon inhibition of the RAD51 transgene, Rad51- cells accumulated in the G2/M phase of the cell cycle before dying. Chromosome analysis revealed that most metaphase-arrested Rad51- cells carried isochromatid-type breaks. In conclusion, Rad51 fulfils an essential role in the repair of spontaneously occurring chromosome breaks in proliferating cells of higher eukaryotes.  相似文献   

13.
Oncogenic human papillomaviruses (mostly HPV types 16 and 18) are the major cause of cervical intraepithelial neoplasia (CIN), which progresses into cervical cancer (CC). To reveal early genetic alterations of chromosome 6 that are important for CC progression, we analyzed the loss of heterozygosity (LOH) in DNAs from 45 CIN cases, 47 microcarcinomas, and 19 invasive squamous cell carcinomas stage IB. LOH analysis of DNA samples prepared with microdissection from all CIN foci, as well as from CC lesions and synchronous CIN, permitted investigation of CIN and CC heterogeneity. Out of all CC stage I cases, 79% showed LOH with six microsatellite markers at chromosome 6. LOH with the microsatellite markers D6S276 (6p22) and TNFa (6p21.3) was found in 50% of the CC cases. LOH frequency in CIN lesions synchronous with CC was higher then in CIN cases without cancer; the statistical significance (P = 0.004) was shown for D6S291 (6p21.2). The finding suggests that the high frequency of LOH in CIN lesions is a marker of unfavorable prognosis for CIN. Progression from microcarcinoma to invasive CC of stage IB was associated with a higher LOH frequency at D6S344 (6p25) and TNFa (6p21.3). Early genetic alterations were found in CIN with microsatellites D6S273 and TNFa located at 6p21.3. Moreover, LOH frequency at D6S273 remained the same in both CIN and CC cases. Based on HPV typing, LOH analysis, and X-chromosome inactivation, the polyclonality of CC lesions, as well as CIN, was observed in a few patients.  相似文献   

14.
DNA polymerase eta synthesizes DNA in vitro with low fidelity. Based on this, here we report the effects of deletion or increased expression of yeast RAD30 gene, encoding for polymerase eta (Pol eta), on spontaneous mutagenesis in vivo. Deletion of RAD30 did not affect spontaneous mutagenesis. Overproduction of Rad30p was slightly mutagenic in a wild-type yeast strain and moderately mutagenic in strains with inactive 3'-->5'-exonuclease of DNA polymerase epsilon or DNA mismatch repair. These data suggest that excess Rad30p reduces replication fidelity in vivo and that the induced errors may be corrected by exonucleolytic proofreading and DNA mismatch repair. However, the magnitude of mutator effect (only up to 10-fold) suggests that the replication fork is protected from inaccurate synthesis by Pol eta in the absence of DNA damage. Overproduction of catalytically inactive Rad30p was also mutagenic, suggesting that much of the mutator effect results from indirect perturbation of replication rather than from direct misincorporation by Pol eta. Moreover, while excess wild-type Pol eta primarily induced base substitutions in the msh6 and pms1 strains, excess inactive Rad30p induced both base substitutions and frameshifts. This suggests that more than one mutagenic mechanism is operating when RAD30 is overexpressed.  相似文献   

15.
Hwang JY  Smith S  Myung K 《Genetics》2005,169(4):1927-1937
Gross chromosomal rearrangements (GCRs) have been observed in many cancers. Previously, we have demonstrated many mechanisms for suppression of GCR formation in yeast. However, pathways that promote the formation of GCRs are not as well understood. Here, we present evidence that the Rad1-Rad10 endonuclease, which plays an important role in nucleotide excision and recombination repairs, has a novel role to produce GCRs. A mutation of either the RAD1 or the RAD10 gene reduced GCR rates in many GCR mutator strains. The inactivation of Rad1 or Rad10 in GCR mutator strains also slightly enhanced methyl methanesulfonate sensitivity. Although the GCRs induced by treatment with DNA-damaging agents were not reduced by rad1 or rad10 mutations, the translocation- and deletion-type GCRs created by a single double-strand break are mostly replaced by de novo telomere-addition-type GCR. Results presented here suggest that Rad1-Rad10 functions at different stages of GCR formation and that there is an alternative pathway for the GCR formation that is independent of Rad1-Rad10.  相似文献   

16.
Degenerate oligonucleotides encoding conserved regions of the Rad52 protein of S. cerevisiae and its homologue, the Rad22 protein of S. pombe, were used to clone a chicken RAD52 counterpart by the polymerase chain reaction. Sequence comparison of the chicken and yeast proteins reveals a strongly conserved region between positions 40 and 178 of the chicken Rad52 sequence indicating that this part of the protein is under strong evolutionary pressure. The first 39 amino acids and the 3' end of the chicken Rad52 homologue does not share significant similarity with the yeast proteins. High abundance of the mRNA in testis makes it likely that the chicken Rad52 protein plays a role in meiotic recombination.  相似文献   

17.
Using the CAN1 gene in haploid cells or heterozygous diploid cells, we characterized the effects of mutations in the RAD52 and REV3 genes of Saccharomyces cerevisiae in spontaneous mutagenesis. The mutation rate was 5-fold higher in the haploid rad52 strain and 2.5-fold lower in rev3 than in the wild-type strain. The rate in the rad52 rev3 strain was as low as in the wild-type strain, indicating the rad52 mutator phenotype to be dependent on REV3. Sequencing indicated that G:C-->T:A and G:C-->C:G transversions increased in the rad52 strain and decreased in the rev3 and rad52 rev3 strains, suggesting a role for REV3 in transversion mutagenesis. In diploid rev3 cells, frequencies of can1Delta::LEU2/can1Delta::LEU2 from CAN1/can1Delta::LEU2 due to recombination were increased over the wild-type level. Overall, in the absence of RAD52, REV3-dependent base-substitutions increased, while in the absence of REV3, RAD52-dependent recombination events increased. We further found that the rad52 mutant had an increased rate of chromosome loss and the rad52 rev3 double mutant had an enhanced chromosome loss mutator phenotype. Taken together, our study indicates that the error-free RAD52 pathway and error-prone REV3 pathway for rescuing replication fork arrest determine spontaneous mutagenesis, recombination, and genome instability.  相似文献   

18.
Sun X  Thrower D  Qiu J  Wu P  Zheng L  Zhou M  Bachant J  Wilson DM  Shen B 《DNA Repair》2003,2(8):925-940
Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.  相似文献   

19.
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51.  相似文献   

20.
DNA double-strand breaks can be introduced by exogenous agents or during normal cellular processes. Genes belonging to the RAD52 epistasis group are known to repair these breaks in budding yeast. Among these genes, RAD52 plays a central role in homologous recombination and DNA double-strand break repair. Despite its importance, its mechanism of action is not yet clear. It is known, however, that the human homologue of Rad52 is capable of binding to DNA ends in vitro. Herein, we show that Rad22 protein, a Rad52 homologue in the fission yeast Schizosaccharomyces pombe, can similarly bind to DNA ends at double-strand breaks. This end-binding ability was demonstrated in vitro by electron microscopy and by protection from exonuclease attack. We also showed that Rad22 specifically binds near double-strand break associated with mating type switching in vivo by chromatin immunoprecipitation analysis. This is the first evidence that a recombinational protein directly binds to DNA double-strand breaks in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号