首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An NAD(P)H oxidase activity stimulated by phenolic compounds has been investigated in purified plasma membranes (pm) and in an intracellular membrane (icm) fraction depleted in plasma membranes, both obtained from a microsomal fraction from cauliflower inflorescences ( Brassica oleracea L.). The phenolic compounds salicylhydroxamic acid (SHAM), ferulic acid, coniferyl alcohol, n -propyl gallate, naringenin, kaempferol and caffeic acid all strongly stimulated the activity. Peroxidase (EC 1.11.1.7), or a peroxidase-like enzyme, was responsible for the NAD(P)H oxidase activity, which proceeded through a free-radical chain reaction and was inhibited by catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and KCN. Most of the total activity was soluble; however, the membrane-bound activity was highly enriched in the pm compared to the icm. The catalase activity was 6 times higher in the icm-fraction than in the pm-fraction, but this was not the reason for the much lower phenol-stimulated NADH oxidase activity in the icm. Peroxidase activity measured with o -dianisidine and H2O2 had about the same specific activities in the pm-and icm-fractions.
Neither the phenol-stimulated NADH oxidase nor the peroxidase activity could be washed away from the pm even by 0.7 M NaCl, indicating that these activities are truly membrane-bound. SHAM as well as the other phenolic compounds capable of stimulating the NADH oxidase reaction were potent inhibitors of blue light-induced cytochrome b -reduction in the pm fraction.  相似文献   

2.
Cytochrome oxidase was purified twentyfold from mitochondria of seedlings of wheat genotypes 28, 31 MS, and 31 MS/28. The enzyme of the hybrid exceeded in activity the parental enzymes. Mixtures of cytochrome oxidase of the parents exhibited complementation in that they approached the activity of the hybrid cytochrome oxidase. Hybrid mitochondria also exhibited heterosis in NADH: cytochrome c reductase activity. Complementation by parent mitochondria was observed for this enzyme also. The Michaelis constant of cytochrome oxidase and NADH: cytochrome reductase was markedly less in the hybrid and the mixture than in the parents. Difference spectra revealed the following: strain 28 had cytochromes a and b but was deficient in cytochrome c; strain 31 MS had cytochromes b and c but no a; the hybrid had all three cytochromes, as did the mixture. The relationship of cytochromes to heterosis and complementation is considered.This work was supported by DeKalb AgResearch, Inc.  相似文献   

3.
The respiratory system of the fastidious beta-proteobacterium Eikenella corrodens grown with limited oxygen was studied. Membranes showed the highest oxidase activity with ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) or succinate and the lowest activity with NADH and formate. The presence of a bc1-type complex was suggested by the inhibition exerted by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), myxothiazol, and antimycin A on respiration with succinate and by the effect of the latter two inhibitors on the succinate-reduced difference spectra. Respiration with succinate or ascorbate-TMPD was abolished by low KCN concentrations, suggesting the presence of a KCN-sensitive terminal oxidase. Cytochromes b and c were spectroscopically detected after reduction with physiological or artificial electron donors, whereas type a and d cytochromes were not detected. The CO difference spectrum of membranes reduced by dithionite and its photodissociation spectrum (77 K) suggested the presence of a single CO compound that had the spectral features of a cytochrome o-like pigment. High-pressure liquid chromatography analysis of membrane haems confirmed the presence of haem B; in contrast, haems A and O were not detected. Peroxidase staining of membrane type c cytochromes using SDS-PAGE revealed the presence of five bands with apparent molecular masses of 44, 33, 30, 26, and 14 kDa. Based on our results, a tentative scheme of the respiratory chain in E. corrodens, comprising (i) dehydrogenases for succinate, NADH, and formate, (ii) a ubiquinone, (iii) a cytochrome bc1, and (iv) a type-cbb' cytochrome c oxidase, is proposed.  相似文献   

4.
A homobutanol fermentation pathway was engineered in a derivative of Escherichia coli B (glucose [glycolysis] => 2 pyruvate + 2 NADH; pyruvate [pyruvate dehydrogenase] => acetyl-CoA + NADH; 2 acetyl-CoA [butanol pathway enzymes] + 4 NADH => butanol; summary stoichiometry: glucose => butanol). Initially, the native fermentation pathways were eliminated from E. coli B by deleting the genes encoding for lactate dehydrogenase (ldhA), acetate kinase (ackA), fumarate reductase (frdABCD), pyruvate formate lyase (pflB), and alcohol dehydrogenase (adhE), and the pyruvate dehydrogenase complex (aceEF-lpd) was anaerobically expressed through promoter replacement. The resulting strain, E. coli EG03 (ΔfrdABCD ΔldhA ΔackA ΔpflB Δ adhE ΔpdhR ::pflBp6-aceEF-lpd ΔmgsA), could generate 4 NADH for every glucose oxidized to two acetyl-CoA through glycolysis and the pyruvate dehydrogenase complex. However, EG03 lost its ability for anaerobic growth due to the lack of NADH oxidation pathways. When the butanol pathway genes that encode for acetyl-CoA acetyltransferase (thiL), 3-hydroxybutyryl-CoA dehydrogenase (hbd), crotonase (crt), butyryl-CoA dehydrogenase (bcd, etfA, etfB), and butyraldehyde dehydrogenase (adheII) were cloned from Clostridium acetobutylicum ATCC 824, and expressed in E. coli EG03, a balanced NADH oxidation pathway was established for homobutanol fermentation (glucose => 4 NADH + 2 acetyl-CoA => butanol). This strain was able to convert glucose to butanol (1,254 mg l(-1)) under anaerobic condition.  相似文献   

5.
1. The electron-transport mechanism was examined in the ;particulate' and ;supernatant' fractions of disintegrated cells of a Park-Williams strain of Corynebacterium diphtheriae. 2. Succinate-oxidase activity was found mainly in the ;particulate' fraction, and NADH(2) oxidase mainly in the ;supernatant', which was devoid of cytochromes and menaquinone. 3. The sum of the activities of particles and supernatant fractions, with respect to both succinate oxidase and NADH(2) oxidase, was substantially less than that of the crude cell extract from which they were obtained. Full activity was restored on recombining ;particles' and ;supernatant'. The characteristics of this reassembled system were investigated. 4. The strain of organism (CN2000) examined contained cytochromes corresponding spectroscopically to ;a', ;b' and ;c' types. All three were reduced by succinate, lactate or NADH(2); but a portion of the cytochrome b, susceptible to reduction by dithionite, could not be reduced by the substrates. 5. Triton X-100 inhibits oxidation of succinate by particulate fraction; on adding succinate, the reduction of cytochrome b is not affected but that of cytochromes a and c is delayed. 6. Irradiation at 360mmu completely destroys menaquinone in the particle fraction. Succinate oxidation is severely decreased; succinate dehydrogenase and NADH(2) oxidation are little affected. Certain menaquinones will restore succinate oxidation in the irradiated material. 7. On adding succinate to irradiated particulate material cytochrome b is partially reduced at once, but reduction of cytochromes a and c is much delayed. A portion of the cytochrome b remains not reduced, but reduction occurs rapidly on the addition of menaquinone (MK-2).  相似文献   

6.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

7.
A ubiquinone-deficient mutant of Escherichia coli K-12 forming 20% of the normal amount of ubiquinone was compared with a normal strain. This lowered concentration of ubiquinone is still four times the concentration of cytochrome b(1). The mutant strain grew more slowly than the normal strain on a minimal medium with glucose as sole source of carbon and gave a lower aerobic growth yield than the normal strain. The reduced nicotinamide adenine dinucleotide (NADH) oxidase rate in membranes from the mutant strain was 40% of the oxidase rate in membranes from the normal strain, and the percentage reduction of cytochrome b(1) in the aerobic steady state, with NADH as substrate, was increased in membranes from the mutant strain. It is concluded that ubiquinone is required for maximum oxidase activity at the relatively high concentration (27 times that of cytochrome b(1)) found in normal cells. The results are discussed in relation to a scheme previously advanced for ubiquinone function in E. coli.  相似文献   

8.
Following treatment with the mutagen N-methyl-N'-nitro-N-nitrosoguanidine, three mutants of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 that produced diacetyl and acetoin from glucose were isolated. The lactate dehydrogenase activity of these mutants was strongly attenuated, and the mutants produced less lactate than the parental strain. The kinetic properties of lactate dehydrogenase of strain CNRZ 483 and the mutants revealed differences in the affinity of the enzyme for pyruvate, NADH, and fructose-1,6-diphosphate. When cultured aerobically, strain CNRZ 483 transformed 2.3% of glucose to acetoin and produced no diacetyl or 2,3-butanediol. Under the same conditions, mutants 483L1, 483L2, and 483L3 transformed 42.0, 78.9, and 75.8%, respectively, of glucose to C4 compounds (diacetyl, acetoin, and 2,3-butanediol). Anaerobically, strain CNRZ 483 produced no C4 compounds, while mutants 483L1, 483L2, and 483L3 transformed 2.0, 37.0, and 25.8% of glucose to acetoin and 2,3-butanediol. In contrast to the parental strain, the NADH balance showed that the mutants regenerated most of the NAD via NADH oxidase under aerobic conditions and by ethanol production under anaerobic conditions.  相似文献   

9.
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.  相似文献   

10.
The electron transport chain (ETC) is one of the major energy generation pathways in microorganisms under aerobic condition. Higher yield of ATP can be achieved through oxidative phosphorylation with consumption of NADH than with substrate level phosphorylation. However, most value-added metabolites are in an electrochemically reduced state, which requires reducing equivalent NADH as a cofactor. Therefore, optimal production of value-added metabolites should be balanced with ETC in terms of energy production. In this study, we attempted to reduce the activity of ETC to secure availability of NADH. The ETC mutants exhibited poor growth rate and production of fermentative metabolites compared to parental strain. Introduction of heterologous pathways for synthesis of 2,3-butanediol and isobutanol to ETC mutants resulted in increased titres and yields of the metabolites. ETC mutants yielded higher NADH/NAD+ ratio but similar ATP content than that by the parental strain. Furthermore, ETC mutants operated fermentative metabolism pathways independent of oxygen supply in large-scale fermenter, resulting in increased yield and titre of 2,3-butanediol. Thus, engineering of ETC is a useful metabolic engineering approach for production of reduced metabolites.  相似文献   

11.
1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an antimycin- or myxothiazol-sensitive manner. However, nitric oxide was not detected by the electrode during the reduction of nitrate. Nitric-oxide synthesis from nitrate could be detected with cells in the presence of very low concentrations of Triton X-100 which selectively inhibits nitric-oxide reductase activity. 5. Nitric oxide was detected as an intermediate in denitrification by including haemoglobin with an anaerobic suspension of cells that was reducing nitrate. The characteristic spectrum of the nitric oxide derivative of haemoglobin was observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were consideraly more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N'N'-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   

13.
Cells of the E3-24 mutant of the strain D273-10B of Saccharomyces cerevisiae, grown in a fermentable substrate not showing catabolite repression of respiration (2% galactose), are able to respire, in spite of their ubiquinone deficiency in mitochondrial membranes. Mitochondria isolated from these mutant cells oxidize exogenous NADH through a pathway insensitive to antimycin A but inhibited by cyanide. Addition of methanolic solutions of ubiquinone homologs stimulates the oxidation rate and restores antimycin A sensitivity in both isolated mitochondria and whole cells. Mersalyl preincubation of isolated mitochondria inhibits both NADH oxidation and NADH-cytochrome c oxido-reductase activity (assayed in the presence of cyanide) with the same pattern. Electrons resulting from the oxidation of exogenous NADH reduce both cytochrome b5 and endogenous cytochrome c. The increase in ionic strength stimulates NADH oxidation, which is also coupled to the ATP synthesis with an ATP/O ratio similar to that obtained with ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) as substrate. The effect of cyanide on these activities and on NADH-induced endogenous cytochrome c reduction is also comparable. These results support the existence in vivo and in isolated mitochondria of a energy-conserving pathway for the oxidation of cytoplasmatic NADH not related to the dehydrogenases of the inner membrane, the ubiquinone, and the b-c1 complex, but involving a cytochrome c shuttle between the NADH-cytochrome c reductase of the outer membrane and cytochrome oxidase in the inner membrane.  相似文献   

14.
15.
The chemical and enzymatic properties of the cytochrome system in the particulate preparations obtained from dormant spores, germinated spores, young vegetative cells, and vegetative cells of Bacillus subtilis PCI219 were investigated. Difference spectra of particulate fractions from dormant spores of this strain suggested the presence of cytochromes a, a(3), b, c(+c(1)), and o. All of the cytochrome components were present in dormant spores and in germinated spores and vegetative cells at all stages which were investigated. Concentrations of cytochromes a, a(3), b, and c(+c(1)) increased during germination, outgrowth, and vegetative growth, but that of cytochrome o was highest in dormant spores. As the cytochrome components were reducible by reduced nicotinamide adenine dinucleotide (NADH), they were believed to be metabolically active. Difference spectra of whole-cell suspensions of dormant spores and vegetative cells were coincident with those of the particulate fractions. NADH oxidase and cytochrome c oxidase were present in dormant spores, germinated spores, and vegetative cells at all stages after germination, but succinate cytochrome c reductase was not present in dormant spores. Cytochrome c oxidase and succinate cytochrome c reductase activities increased with growth, but NADH oxidase activity was highest in germinated spores and lowest in vegetative cells. There was no striking difference between the effects of respiratory inhibitors on NADH oxidase in dormant spores and those on NADH oxidase in vegetative cells.  相似文献   

16.
Mutant strains of Rhizobium japonicum constitutive for H2 uptake activity (Hupc) contained significantly more membrane-bound b-type cytochrome than did the wild type when grown heterotrophically. The Hupc strains contained approximately three times more dithionite- and NADH-reducible CO-reactive b-type cytochrome than did the wild type; the absorption features of the CO spectra were characteristic of cytochrome o. This component, designated cytochrome b', was not reduced by NADH in the presence of cyanide. Cytochrome o from the wild type (SR) and cytochrome b' from mutants SR476 and SR481 bound to CO with similar dissociation constants of 5.4, 7.4, and 5.6 microM, respectively. NADH-dependent reduction of cytochrome b' from SR476 and SR481 and the cytochrome o from SR followed pseudo-first-order kinetics with similar rate constants. Based on these spectral, ligand-binding, and kinetic measurements, it was concluded that cytochrome b' expressed by the Hupc mutants is equivalent to cytochrome o found in the wild type. H2, NADH, and succinate each reduced the same amount of total b-type cytochrome in membranes from SR481, and the rate of H2-dependent cytochrome o reduction was significantly less than with succinate or NADH as the reductants. It was concluded that neither cytochrome o nor any b-type cytochrome expressed by the Hupc mutants was unique to the H2 oxidation system. At low O2 concentrations, the inhibition of H2 and NADH oxidase activities by CO closely paralleled the binding of CO to cytochrome o rather than cytochromes a3 or c'. This suggested that NADH and H2 oxidation involved primarily cytochrome o as the terminal oxidase at low O2 tensions.  相似文献   

17.
A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction.  相似文献   

18.
A yeast strain (SP1) resistant to glucose repression modified simultaneously in the fermentative and in the oxidative pathways (loss of alcohol dehydrogenase I and over production of cytochrome a + a3, being insensitive to the glucose effect) developed a secondary mitochondrial hydrogen pathway. Oxidative phosphorylation was measured with exogenous NADH as substrate on mitochondria derived from repressed or derepressed cells. In this strain, antimycin A promotes a partial inhibition of NADH oxidation but a complete inhibition of phosphorylation. Amytal partially inhibits oxidation of NADH but not phosphorylation. KCN inhibits NADH oxidation in a biphasic way (first level 0.1 mM, second level 5 mM) but phosphorylation was fully inhibited by 0.1 mM KCN. This alternative but non-phosphorylating pathway is insensitive to salicyl hydroxamate. The external NADH dehydrogenase, like cytochrome c oxidase is partially insensitive to catabolite repression. These results provide evidence for the presence in strain SP1 of an alternative mitochondrial pathway, going from the external NADH dehydrogenase to an oxidase, different from the normal NADH dehydrogenase ubiquinone pathway.  相似文献   

19.
1. Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorate-resistant mutant strains of the wild type, fumarate reductase appeared to be affected. 2. Cytoplasmic membrane suspensions isolated from anaerobically grown P. mirabilis oxidized formate and NADH with oxygen and with fumarate, too. 3. Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochrome b, cytochrome a1 and cytochrome d. Cytochrome b was reduced by NADH as well as by formate to approximately 80%. 4. 2-n-Heptyl-4-hydroxyquinilone-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state. 5. The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochrome b. 6. The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen. 7. Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochrome b as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grown P. mirabilis is presented.  相似文献   

20.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号