首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male ejaculates include large amounts of seminal fluid proteins (Sfps) that influence male sperm competitive success. In spite of their diverse proximate functions, Sfps involved in sperm competition increase male fitness in one of three ways: (1) “avoidance” proteins help males avoid sperm competition, (2) “defense” proteins help males defend their sperm from displacement by the female's subsequent mate, and (3) “offense” proteins aid males in displacing sperm of preceding males. Here, we present a population genetic model of the evolution of allocation of finite resources by males to the three kinds of Sfps. We analyze the influence of relative efficiencies of different Sfps, of plasticity in resource allocation, and of differences in viability costs of Sfps. We find that in absence of plasticity or different viability costs, equal investment in defense and offense Sfps evolves, irrespective of their relative efficiency. In all cases, males evolve to invest more in avoidance when avoidance proteins are increasingly efficient, and when offense is more efficient than defense. Differences in viability costs result in lower investment in costly proteins, whereas plasticity has complex effects, influencing both the optimal seminal fluid composition and maintenance of variation in investment in these proteins across populations.  相似文献   

2.
Across diverse taxa, seminal fluid proteins (Sfps) transferred at mating affect the reproductive success of both sexes. Such reproductive proteins often evolve under positive selection between species; because of this rapid divergence, Sfps are hypothesized to play a role in speciation by contributing to reproductive isolation between populations. In Drosophila, individual Sfps have been characterized and are known to alter male sperm competitive ability and female post-mating behavior, but a proteomic-scale view of the transferred Sfps has been missing. Here we describe a novel proteomic method that uses whole-organism isotopic labeling to detect transferred Sfps in mated female D. melanogaster. We identified 63 proteins, which were previously unknown to function in reproduction, and confirmed the transfer of dozens of predicted Sfps. Relative quantification of protein abundance revealed that several of these novel Sfps are abundant in seminal fluid. Positive selection and tandem gene duplication are the prevailing forces of Sfp evolution, and comparative proteomics with additional species revealed lineage-specific changes in seminal fluid content. We also report a proteomic-based gene discovery method that uncovered 19 previously unannotated genes in D. melanogaster. Our results demonstrate an experimental method to identify transferred proteins in any system that is amenable to isotopic labeling, and they underscore the power of combining proteomic and evolutionary analyses to shed light on the complex process of Drosophila reproduction.  相似文献   

3.

Background

No commercially licensed vaccine or treatment is available for dengue fever, a potentially lethal infection that impacts millions of lives annually. New tools that target mosquito control may reduce vector populations and break the cycle of dengue transmission. Male mosquito seminal fluid proteins (Sfps) are one such target since these proteins, in aggregate, modulate the reproduction and feeding patterns of the dengue vector, Aedes aegypti. As an initial step in identifying new targets for dengue vector control, we sought to identify the suite of proteins that comprise the Ae. aegypti ejaculate and determine which are transferred to females during mating.

Methodology and Principal Findings

Using a stable-isotope labeling method coupled with proteomics to distinguish male- and female-derived proteins, we identified Sfps and sperm proteins transferred from males to females. Sfps were distinguished from sperm proteins by comparing the transferred proteins to sperm-enriched samples derived from testes and seminal vesicles. We identified 93 male-derived Sfps and 52 predicted sperm proteins that are transferred to females during mating. The Sfp protein classes we detected suggest roles in protein activation/inactivation, sperm utilization, and ecdysteroidogenesis. We also discovered that several predicted membrane-bound and intracellular proteins are transferred to females in the seminal fluids, supporting the hypothesis that Ae. aegypti Sfps are released from the accessory gland cells through apocrine secretion, as occurs in mammals. Many of the Ae. aegypti predicted sperm proteins were homologous to Drosophila melanogaster sperm proteins, suggesting conservation of their sperm-related function across Diptera.

Conclusion and Significance

This is the first study to directly identify Sfps transferred from male Ae. aegypti to females. Our data lay the groundwork for future functional analyses to identify individual seminal proteins that may trigger female post-mating changes (e.g., in feeding patterns and egg production). Therefore, identification of these proteins may lead to new approaches for manipulating the reproductive output and vectorial capacity of Ae. aegypti.  相似文献   

4.
Recent studies have suggested that males may vary the quality of their ejaculates in response to sperm competition, although the mechanisms by which they do so remain unclear. The viability of sperm is an important aspect of ejaculate quality that determines competitive fertilization success in the field cricket Teleogryllus oceanicus. Using in vitro mixtures of sperm and seminal fluid from pairs of male crickets, we show that seminal fluid can affect the viability of sperm in this species. We found that males who invest greatly in the viability of their own sperm can enhance the viability of rival sperm, providing the opportunity for males to exploit the investments in sperm competition made by their rivals. Transitive effects of seminal fluids across the ejaculates of different males are expected to have important implications for the dynamics of male investments in sperm competition.  相似文献   

5.
Sperm competition (SC) occurs when the sperm of two or more males compete for the same set of ova. Theoretical models and experimental observations indicate that the presence of rival males causes focal males to adjust sperm allocation in a given copulation. Males allocate more sperm when they perceive the presence of one rival male (SC risk), either before or during mating, or when they perceive the presence of multiple rival males before mating (previous SC intensity). Conversely, males are expected to allocate fewer sperm when they perceive the presence of rival males during mating (current SC intensity). Here, we varied male perception of SC by manipulating the number of rival males, both before mating (from emergence to mating) and during mating (at the time of mating) to examine their effects on mating latency, copulation duration, and sperm allocation in the South American fruit fly Anastrepha fraterculus. We showed that exposure to rival males at the time of mating decreased mating latency. However, in contrast to the theory, exposure to multiple rivals at the time of mating increased sperm allocation. Female and male size were significant predictors of mating latency, copulation duration, and sperm allocation. Our results showed that there is a plastic response of males to the level of perceived SC through the number of rival males. Current levels of SC intensity are important in shaping male responses to SC, although the patterns in this species are opposite to predictions from the existing theory. We propose that female preference for males forming leks could explain lower sperm counts when encountering only one or two males.  相似文献   

6.
Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.  相似文献   

7.
Sperm competition is pervasive and fundamental to determining a male's overall fitness. Sperm traits and seminal fluid proteins (Sfps) are key factors. However, studies of sperm competition may often exclude females that fail to remate during a defined period. Hence, the resulting data sets contain fewer data from the potentially fittest males that have most success in preventing female remating. It is also important to consider a male's reproductive success before entering sperm competition, which is a major contributor to fitness. The exclusion of these data can both hinder our understanding of the complete fitness landscapes of competing males and lessen our ability to assess the contribution of different determinants of reproductive success to male fitness. We addressed this here, using the Drosophila melanogaster model system, by (i) capturing a comprehensive range of intermating intervals that define the fitness of interacting wild‐type males and (ii) analysing outcomes of sperm competition using selection analyses. We conducted additional tests using males lacking the sex peptide (SP) ejaculate component vs. genetically matched (SP+) controls. This allowed us to assess the comprehensive fitness effects of this important Sfp on sperm competition. The results showed a signature of positive, linear selection in wild‐type and SP+ control males on the length of the intermating interval and on male sperm competition defence. However, the fitness surface for males lacking SP was distinct, with local fitness peaks depending on contrasting combinations of remating intervals and offspring numbers. The results suggest that there are alternative routes to success in sperm competition and provide an explanation for the maintenance of variation in sperm competition traits.  相似文献   

8.
Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition). Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed) this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se.  相似文献   

9.
Males of many species allocate sperm to ejaculates strategically in response to variation in the risk and intensity of sperm competition. The notable exception is passerine birds, in which evidence for strategic allocation is absent. Here we report the results of a study testing for strategic ejaculate allocation in a passerine bird, the sand martin (Riparia riparia). Natural ejaculates were collected from males copulating with a model female. Ejaculates transferred in the presence of a rival male contained significantly more sperm than ejaculates transferred in the absence of a rival male. There was no evidence that this difference was due to the confounding effects of the year of ejaculate collection, the identity of the model female, the colony, the stage of season or the period of the day in which ejaculates were collected. A more detailed examination of the ejaculate patterns of individual males, achieved by the DNA profiling of ejaculates, provided additional evidence for strategic allocation of sperm.  相似文献   

10.
Sperm production is costly and so males are expected to prudently allocate sperm to matings in a manner that maximizes their fitness. Sperm competition hypotheses predict that when facing increased sperm competition risk males should increase their investment in ejaculates. In contrast, when facing high future mating opportunities, males are expected to decrease their sperm investment in the current mating. This is because males should keep in reserve an amount of sperm proportional to their expected future mating opportunities. We experimentally tested whether male Cook Strait giant weta (Anostostomatidae: Orthoptera: Deinacrida rugosa) phenotypically adjust their investment in ejaculates in relation to their perceived risk of sperm competition and future mating opportunities. D. rugosa is a large flightless orthopteran insect in which males pass multiple spermatophores to females during a day-long mating bout. Contrary to expectation, we found that low female availability (i.e. increased sperm competition risk) had no effect on male resource allocation to sperm (i.e. number of spermatophores) compared to controls whereas, contrary to expectation, males experiencing high female availability increased their ejaculate investment by transferring significantly more spermatophores to their mates. Our results might be a consequence of males being insensitive to increased presence of rival males, reducing their allocation to sperm under increasingly risky circumstances, or due to females prolonging copulations when their perceived future mating opportunities are low.  相似文献   

11.
Increasing evidence shows that spermatogenesis is costly. As a consequence, males should optimize the use of their sperm to maximize their reproductive outputs in their lifetime. However, experimental evidence on this prediction is largely lacking. Here, we examine how a male moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) responds to the presence of rivals or additional mates and how such response influences his lifetime reproductive fitness. We show that when rival males are present around a copulating pair, the male ejaculates more sperm to win a sperm competition battle but in such an environment he inseminates fewer females, sires fewer offspring and lives shorter. The opposite is the case when additional females are present during copulation. These findings reveal that elevated reproductive expenditure owing to sperm competition intensity is made at the expense of longevity and future reproduction.  相似文献   

12.
Costs incurred in the manufacture of ejaculates may constrainthe number of sperm that males can produce, so males shouldshow some economy in their allocation of sperm across multiplematings. In species in which females mate with multiple malesand are capable of storing sperm for extended periods, spermallocation of males should be tailored to the risk of spermcompetition. Recent game theory predicts that males shouldtransfer the least sperm when there are no other rivals, andthe most sperm when only one other rival is likely to inseminatethe female. However, as the numbers of competitors increasesbeyond two, the models predict a corresponding decrease in ejaculate expenditure. We tested these predictions in three cricket species, Gryllodes sigillatus, Gryllus veletis, and Gryllus texensis, assessing the sperm allocation of males held under three levelsof apparent interrival competition: no rivals, one rival andsix rivals. Sperm allocation of G. veletis varied accordingto theory: males increased their sperm allocation with an increasedrisk of sperm competition (no rivals vs. one), but decreasedtheir allocation with an increased intensity of sperm competition(one rival vs. six). Sperm allocation of male G. texensis showedno significant response to the density of rivals, and spermallocation in G. sigillatus was influenced by an unexpectedinteraction between treatment density and the order in whichmales experienced the three treatments. The observed interspecificvariation in facultative sperm allocation may be due to interspecificdifferences in population density, rearing environment, orfemale mating behavior.  相似文献   

13.
Seminal proteins from the Drosophila male accessory gland induce post-mating responses (PMR) in females. The PMR comprise behavioral and physiological changes that include increased egg laying, decreased receptivity to courting males, and changes in the storage and use of sperm. Many of these changes are induced by a “sex peptide” (SP) and are maintained by SP’s binding to, and slow release from, sperm. The accessory gland contains two secretory cell types with distinct morphological and developmental characteristics. Products of these “main” and “secondary” cells work interdependently to induce and maintain the PMR. To identify individual genes needed for the morphology and function of secondary cells, we studied iab-6cocu males, whose secondary cells have abnormal morphology and fail to provide products to maintain the PMR. By RNA-seq, we identified 77 genes that are downregulated by a factor of >5× in iab-6cocu males. By functional assays and microscopy, we tested 20 candidate genes and found that at least 9 are required for normal storage and release of SP in mated females. Knockdown of each of these 9 genes consequently leads to a reduction in egg laying and an increase in receptivity over time, confirming a role for the secondary cells in maintaining the long-term PMR. Interestingly, only 1 of the 9 genes, CG3349, encodes a previously reported seminal fluid protein (Sfp), suggesting that secondary cells may perform essential functions beyond the production and modification of known Sfps. At least 3 of the 9 genes also regulate the size and/or abundance of secondary cell vacuoles, suggesting that the vacuoles’ contents may be important for the machinery used to maintain the PMR.  相似文献   

14.
A common mechanism through which males can enhance their successin postcopulatory contests over paternity is to inseminate moresperm than their rivals. However, ejaculate production is costlyand the evolution of prudent sperm allocation strategies sensitiveto variation in local levels of sperm competition has now beendemonstrated in diverse taxa, including mammals. Theory predictsan increased sperm allocation in response to an elevated riskof sperm competition, but here we show that male house mice(Mus musculus domesticus) instead ejaculate fewer sperm perejaculate when mating in the presence of a rival male. Thissurprising sperm allocation pattern may be a necessary consequenceof adaptive changes in copulatory behavior, enabling males toachieve more rapid sperm transfer and/or to ejaculate repeatedlyunder risk of sexual competition. The size of a second ejaculatecomponent, the copulatory plug, is unaffected by sperm competitionrisk. Our results highlight how the often complex interplaybetween different reproductive traits can affect the evolutionof sperm competition phenotypes.  相似文献   

15.
Theory predicts that males should increase overall investment in ejaculate expenditure with increasing levels of sperm competition. Since ejaculate production is costly, we may expect males to tailor their reproductive investment according to anticipated levels of sperm competition. Here, we investigate plasticity in ejaculate investment in response to cues of population average levels of sperm competition in a promiscuous mammal, the bank vole (Myodes glareolus). We manipulated the social experience of experimental subjects during sexual development via differential exposure to the odour of rival males, to simulate conditions associated with relatively high or low average levels of sperm competition. Males exposed to a high level of competition developed larger major accessory reproductive glands (seminal vesicles) than those that experienced a low level of competition, suggesting that an increased investment in the production of copulatory plugs and/or mating rate may be beneficial at relatively high sperm competition levels. However, investment in sperm production, testis size and sperm motility were not altered according to social experience. Our findings emphasize the importance of non-sperm components of the ejaculate in mammalian postcopulatory sexual selection, and add to the growing evidence linking plasticity in reproductive traits to social cues of sperm competition.  相似文献   

16.
Female sexual promiscuity can have significant effects on male mating decisions because it increases the intensity of competition between ejaculates for fertilization. Because sperm production is costly, males that can detect multiple matings by females and allocate sperm strategically will have an obvious fitness advantage. The presence of rival males is widely recognized as a cue used by males to assess sperm competition. However, for species in which males neither congregate around nor guard females, other more cryptic cues might be involved. Here, we demonstrate unprecedented levels of sperm competition assessment by males, which is mediated via the use of chemical cues. Using the cricket Teleogryllus oceanicus, we manipulated male perception of sperm competition by experimentally coating live unmated females with cuticular compounds extracted from males. We found that males adjusted their ejaculate allocation in response to these compounds: the viability of sperm contained within a male's ejaculate decreased as the number of male extracts applied to his virgin female partner was increased. We further show that males do not respond to the relative concentration of male compounds present on females, but rather to the number of distinct signature odours of individual males. Our results conform to sperm competition theory, and show for the first time, to our knowledge, that males can detect different intensities of sperm competition by using distinct chemical cues of individual males present on females.  相似文献   

17.
Sperm competition is a powerful and widespread evolutionary force that drives the divergence of behavioural, physiological and morphological traits. Elucidating the mechanisms governing differential fertilization success is a fundamental question of sperm competition. Both sperm and nonsperm ejaculate components can influence sperm competition outcomes. Here, we investigate the role of a nonsemen copulatory fluid in sperm competition. Male Japanese quail possess a gland that makes meringue‐like foam. Males produce and store foam independent of sperm and seminal fluid, yet transfer foam to females during copulation. We tested whether foam influenced the outcome of sperm competition by varying foam state and mating order in competitive matings. We found that the presence of foam from one male decreased the relative fertilization success of a rival, and that foam from a given male increased the probability he obtained any fertilizations. Mating order also affected competitive success. Males mated first fertilized proportionally more eggs in a clutch and had more matings with any fertilizations than subsequent males. We conclude that the function of foam in sperm competition is mediated through the positive interaction of foam with a male's sperm, and we speculate whether the benefit is achieved through improving sperm storage, fertilizing efficiency or retention. Our results suggest males can evolve complex strategies to gain fertilizations at the expense of rivals as foam, a copulatory fluid not required for fertilization, nevertheless, has important effects on reproductive performance under competition.  相似文献   

18.
Abstract. Resource allocation between somatic and reproductive structures has important fitness consequences for individuals, and optimal trade-offs are expected to depend not only on mating system differences among species but also on levels of resource stress within species. We tested the prediction that polyandry (associated with increased sperm competition) will increase male reproductive allocation in bioluminescent fireflies in Photinus spp. by comparing the relative mass of testes, seminal vesicles, and reproductive accessory glands among a monandrous and several polyandrous species. In addition, we examined a single population of a polyandrous species, Photinus greeni , to see how reproductive allocation might shift between years in response to different levels of larval resource stress. As predicted, males of P. collustrans , a monandrous species, showed a fivefold lower allocation to sperm production and a 100-fold lower allocation to reproductive accessory glands compared with males from polyandrous species. We also found evidence within P. greeni of a trade-off between allocation either to reproduction or to somatic tissue; following larval resource stress, males eclosed at significantly shorter body lengths, yet showed a 35% increase in their reproductive allocation. These results demonstrate that mating systems strongly influence male allocation to reproductive accessory glands as well as to sperm production. Furthermore, these results suggest that under larval resource stress males of Photinus spp. increase their allocation to reproduction at the expense of somatic tissue, thus maximizing their ability to produce nuptial gifts required for reproductive success.  相似文献   

19.
Chapman T  Davies SJ 《Peptides》2004,25(9):1477-1490
The study of insect seminal fluid proteins provides a unique window upon adaptive evolution in action. The seminal fluid of Drosophila melanogaster contains over 80 proteins and peptides, which are transferred together with sperm by mating males. The functions of many of these substances are not yet known. However, those that have been characterized have marked effects on the reproductive success of males and females. For example, seminal fluid proteins and peptides can decrease female receptivity, can increase egg production and can increase sperm storage, and are necessary for sperm transfer and success in sperm competition. In this review we focus on the currently known functions of seminal fluid molecules and on new technologies and approaches that are enabling novel questions about their form and function to be addressed. We discuss how techniques for disrupting the production of seminal fluid proteins, such as homologous recombination and RNA interference, along with the use of microarrays and yeast two hybrid systems, should allow us to address ever more sophisticated questions about seminal fluid protein function. These and similar techniques promise to reveal the function of naturally-occurring variants of these proteins and hence the evolutionary significance of genetic variation for them.  相似文献   

20.
Body size of virtual rivals affects ejaculate size in sticklebacks   总被引:3,自引:0,他引:3  
Sperm competition occurs when sperm of two or more males competeto fertilize a given set of eggs. Theories on sperm competitionexpect males under high risk of sperm competition to increaseejaculate size. Here we confirm this prediction experimentallyin the three-spined stickleback (Gasterosteus aculeatus). Inthis species, sneaking (i.e., stealing of fertilizations byneighboring males) can lead to sperm competition. Sneaking malesinvade foreign nests, and the owners vigorously try to preventthis intrusion. In such fights, male body size is assumed tobe an important predictor of success. Consequently, the riskof sperm competition may depend on the size of a potential competitor.We experimentally confronted males before spawning with eithera large or a small computer-animated rival. We show that malesejaculated significantly more sperm after the presentation ofthe larger virtual rival than after the small stimulus. In addition,the time between the initiation of courting and the spawningwas shorter in the large virtual male treatment. The resultssuggest that stickleback males tailor ejaculate size relativeto the risk of sperm competition perceived by the size of apotential competitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号