首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ~70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.  相似文献   

2.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

3.
Src kinase activity was found to protect endothelial cells from apoptosis during vascular endothelial growth factor (VEGF)-, but not basic fibroblast growth factor (bFGF)-, mediated angiogenesis in chick embryos and mice. In fact, retroviral targeting of kinase-deleted Src to tumor-associated blood vessels suppressed angiogenesis and the growth of a VEGF-producing tumor. Although mice lacking individual Src family kinases (SFKs) showed normal angiogenesis, mice deficient in pp60c-src or pp62c-yes showed no VEGF-induced vascular permeability (VP), yet fyn-/- mice displayed normal VP. In contrast, inflammation-mediated VP appeared normal in Src-deficient mice. Therefore, VEGF-, but not bFGF-, mediated angiogenesis requires SFK activity in general, whereas the VP activity of VEGF specifically depends on the SFKs, Src, or Yes.  相似文献   

4.
Functional inactivation of the protein tyrosine phosphatase DEP-1 leads to increased endothelial cell proliferation and failure of vessels to remodel and branch. DEP-1 has also been proposed to contribute to the contact inhibition of endothelial cell growth via dephosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a mediator of vascular development. However, how DEP-1 regulates VEGF-dependent signaling and biological responses remains ill-defined. We show here that DEP-1 targets tyrosine residues in the VEGFR2 kinase activation loop. Consequently, depletion of DEP-1 results in the increased phosphorylation of all major VEGFR2 autophosphorylation sites, but surprisingly, not in the overall stimulation of VEGF-dependent signaling. The increased phosphorylation of Src on Y529 under these conditions results in impaired Src and Akt activation. This inhibition is similarly observed upon expression of catalytically inactive DEP-1, and coexpression of an active Src-Y529F mutant rescues Akt activation. Reduced Src activity correlates with decreased phosphorylation of Gab1, an adapter protein involved in VEGF-dependent Akt activation. Hypophosphorylated Gab1 is unable to fully associate with phosphatidylinositol 3-kinase, VEGFR2, and VE-cadherin complexes, leading to suboptimal Akt activation and increased cell death. Overall, our results reveal that despite its negative role on global VEGFR2 phosphorylation, DEP-1 is a positive regulator of VEGF-mediated Src and Akt activation and endothelial cell survival.  相似文献   

5.
Inhibition of vascular endothelial growth factor receptor-2 (VEGFR2) kinase blocks angiogenesis, the process of generating new capillary blood vessels that are important in tumor growth. To identify small molecule inhibitors of the VEGFR2 kinase, we undertook a computer assisted fragment-based screening that used 3-D structural models of the VEGFR2 kinase, and hinge region as a fragment anchor point. Seven novel non-cytotoxic compounds were identified which limited the induction of capillary networks by human umbilical vein endothelial cells in the low micromolar range.  相似文献   

6.
Regulated differentiation of chondrocytes is essential for both normal skeletal development and maintenance of articular cartilage. The intracellular pathways that control these events are incompletely understood, and our ability to modulate the chondrocyte phenotype in vivo or in vitro is therefore limited. Here we examine the role played by one prominent group of intracellular signalling proteins, the Src family kinases, in regulating the chondrocyte phenotype. We show that the Src family kinase Lyn exhibits a dynamic expression pattern in the chondrogenic cell line ATDC5 and in a mixed population of embryonic mouse chondrocytes in high-density monolayer culture. Inhibition of Src kinase activity using the pharmacological compound PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine) strongly reduced the number of primary mouse chondrocytes. In parallel, PP2 treatment increased the expression of both early markers (such as Sox9, collagen type II, aggrecan and xylosyltransferases) and late markers (collagen type X, Indian hedgehog and p57) markers of chondrocyte differentiation. Interestingly, PP2 repressed the expression of the Src family members Lyn, Frk and Hck. It also reversed morphological de-differentiation of chondrocytes in monolayer culture and induced rounding of chondrocytes, and reduced stress fibre formation and focal adhesion kinase phosphorylation. We conclude that the Src kinase inhibitor PP2 promotes chondrogenic gene expression and morphology in monolayer culture. Strategies to block Src activity might therefore be useful both in tissue engineering of cartilage and in the maintenance of the chondrocyte phenotype in diseases such as osteoarthritis.  相似文献   

7.
Exposure of endothelial cells to vascular endothelial growth factor (VEGF) induced tyrosine phosphorylation of focal adhesion kinase (FAK) on site Tyr(407), an effect that required the association of VEGF receptor 2 (VEGFR2) with HSP90. The association of VEGFR2 with HSP90 involved the last 130 amino acids of VEGFR2 and was blocked by geldanamycin, a specific inhibitor of HSP90. Moreover, geldanamycin inhibited the VEGF-induced activation of the small GTPase RhoA, which resulted in an inhibition of phosphorylation of FAK on site Tyr(407). In this context, the inhibition of RhoA kinase (ROCK) with Y27632 or by expression of dominant negative forms of RhoA or ROCK impaired the VEGF-induced phosphorylation of Tyr(407) within FAK. In contrast to phosphorylation of Tyr(861), the phosphorylation of site Tyr(407) was insensitive to Src kinase inhibition by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2). We also found that the recruitment of paxillin to FAK was inhibited by geldanamycin but not by PP2, whereas both geldanamycin and PP2 inhibited the recruitment of vinculin to FAK. In accordance, the recruitment of paxillin and vinculin to FAK was inhibited in cells that express the mutant FAK-Y407F, whereas the expression of the mutant Y861F inhibited the recruitment of paxillin but not of vinculin. Importantly, cell migration was abolished in cells in which the signal from the VEGFR2-HSP90 pathway was blocked by the expression of Delta130VEGFR2, a deletant of VEGFR2 that does not associate with HSP90. Our findings underscore for the first time the key role played by the VEGFR2-HSP90-RhoA-ROCK-FAK/Tyr(407) pathway in transducing the VEGF signal that leads to the assembly of focal adhesions and endothelial cell migration.  相似文献   

8.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

9.
Sphingosine 1-phosphate (S1P), a ligand for endothelial differentiation gene family proteins, is one of the most potent signal mediators released from activated platelets. Here, we report that S1P induces membrane ruffling of human umbilical vein endothelial cells (HUVECs) via the vascular endothelial growth factor receptor (VEGFR), Src family tyrosine kinase(s), and the CrkII adaptor protein. S1P induced prominent phosphorylation of CrkII in HUVECs, indicating that CrkII was involved in the S1P-induced signaling pathway. S1P-induced CrkII phosphorylation was blocked by pertussis toxin and overexpression of the carboxyl terminus of beta-adrenergic receptor kinase, indicating that the betagamma subunit of G(i) was required for the phosphorylation. Notably, the S1P-induced CrkII phosphorylation was also abolished by inhibitors of VEGFR or Src family tyrosine kinases. By using Picchu, a real time monitoring protein for CrkII phosphorylation, we found that S1P induced rapid CrkII phosphorylation at membrane ruffles. Finally, we observed that expression of a dominant negative mutant of CrkII inhibited the S1P-induced membrane ruffling and cell migration. These results delineated a novel S1P signaling pathway that involves sequential activation of G(i)-coupled receptor(s), VEGFR, Src family tyrosine kinase(s), and the CrkII adaptor protein, and which is responsible for both the induction of membrane ruffling and the increase in cell motility.  相似文献   

10.
Parathyroid hormone‐related protein (PTHrP) stimulates osteoblastic function through its N‐ and C‐terminal domains. Since the osteogenic action of the latter domain appears to depend at least in part on its interaction with the vascular endothelial growth factor (VEGF) system, we aimed to explore the putative mechanism underlying this interaction in osteoblasts. Using native conditions for protein extraction and immunoblotting, we found that both PTHrP (107–139) and the shorter PTHrP (107–111) peptide (known as osteostatin), at 100 nM, promoted the appearance of a VEGF receptor (VEGFR) 2 protein band of apparent Mr. wt. 230 kDa, which likely represents its activation by dimer formation, in mouse osteoblastic MC3T3‐E1 cells. Moreover, osteostatin (100 nM) maximally increased VEGFR2 phosphorylation at Tyr‐1059 within 5–10 min in both MC3T3‐E1 and rat osteoblastic osteosarcoma UMR‐106 cells. This phosphorylation elicited by osteostatin appears to be VEGF‐independent, but prevented by the VEGFR2 activation inhibitor SU1498 and also by the Src kinase inhibitors SU6656 and PP1. Furthermore, osteostatin induced phosphorylation of Src, extracellular signal‐regulated kinase (ERK) and Akt with a similar time course to that observed for VEGFR2 activation in these osteoblastic cells. This osteostatin‐dependent induction of ERK and Akt activation was abrogated by SU6656. Up‐regulation of VEGF and osteoprotegerin gene expression as well as the pro‐survival effect induced by osteostatin treatment were all prevented by both SU1498 and SU6656 in these osteoblastic cells. Collectively, these findings demonstrate that the osteostatin domain of C‐terminal PTHrP phosphorylates VEGFR2 through Src activation, which represents a mechanism for modulating osteoblastic function. J. Cell. Biochem. 114: 1404–1413, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Inhibition of angiogenesis could be a treatment strategy for diseases such as cancer, rheumatoid arthritis, and diabetic retinopathy. PP2 is a pharmacological inhibitor of Src family kinases and was found to inhibit FGF-2 induced angiogenesis in vivo. Experiments in vitro showed that PP2 inhibited invasive growth and sprouting of both endothelial and vascular smooth muscle cells into a fibrin matrix. PP2 inhibited the formation of lamellopodia and expression of kinase inactive c-Src reduced phosphorylation of cortactin and paxillin, suggesting a model in which Src kinases are involved in organization of the actin cytoskeleton. Consequently, endothelial cells expressing kinase inactive c-Src failed to spread and form cord-like structures on a collagen matrix. These data suggest that pharmacological inactivation of Src family kinases inhibits FGF-2 stimulated angiogenesis by interference with organization of the actin cytoskeleton in both endothelial and vascular smooth muscle cells, which affects cell migration.  相似文献   

12.
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.  相似文献   

13.
Angiogenesis is a process of development and growth of new capillary blood vessels from pre-existing vessels. Angiogenic growth factors play important roles in the development and maintenance of some malignancies, of which vascular endothelial growth factor (VEGF)/VEGFR2 interactions are involved in proliferation, migration, and survival of many cancer cells. The aim of this study was to investigate the function of VEGFR2 in human hemangiomas (HAs). Using immunohistochemistry assay, we examined the expression levels of VEGF, VEGFR2, Ki-67, glucose transporter-1 (Glut-1), phosphorylated protein kinase B (p-AKT) and p-ERK in different phases of human HAs. Positive expression of VEGF, VEGFR2, Ki-67, Glut-1, p-AKT and p-ERK was significantly increased in proliferating phase HAs, while decreased in involuting phase HAs (P=0.001; P=0.003). In contrast, cell apoptotic indexes were decreased in proliferating phase HAs, but increased in involuting phase HAs (P<0.01). Furthermore, we used small hairpin RNA (shRNA)-mediated VEGFR2 knockdown in primary HA-derived endothelial cells (HemECs) to understand the role of VEGF/VEGFR2 signaling. Knockdown of VEGFR2 by Lv-shVEGFR2 inhibited cell viability and induced apoptosis in primary HemECs companied with decreased expression of p-AKT, p-ERK, p-p38MAPK and Ki-67 and increased expression of caspase-3 (CAS-3); Overexpression of VEGFR2 promoted cell viability and blocked apoptosis in Lv-VEGFR2-transfected HemECs. Taken together, our findings demonstrate that, increased expression of VEGFR2 is involved in the development of primary HemECs possibly through regulation of the AKT and ERK pathways, suggesting that VEGFR2 may be a potential therapeutic target for HAs.Key words: vascular endothelial growth factor receptor 2, hemangioma, proliferation, apoptosis  相似文献   

14.
Small cell lung cancer (SCLC) is characterized by multiple genetic alterations that include inactivation of the retinoblastoma protein (Rb), the establishment of several autocrine loops including that induced by coexpression of stem cell factor (SCF) and Kit, and the ectopic expression and activation of Src family kinases. Previous studies have shown that Lck associates with, and becomes activated by, Kit after SCF stimulation of SCLC cells. In the present study, we have demonstrated that PP1, a pharmacological inhibitor of Src kinases, blocked SCF-mediated activation of mitogen-activated protein (MAP) kinase, but it also inhibited Kit activation. However, MAP kinase activation was more sensitive than Kit activation to the effects of PP1. Overexpression of Lck reduced the sensitivity of MAP kinase activation to PP1 without altering the sensitivity of Kit activation, which suggested a role for Lck in SCF-mediated MAP kinase activation. Inducible expression of a dominant negative Lck inhibited MAP kinase activation in a dose-dependent manner, which confirmed that Src family kinase activity is required for SCF-induced MAP kinase activation. The growth of cells that expressed dominant negative Lck was unaffected, however, despite the inhibition of MAP kinase. Growth was also unaffected by the inhibition of the MAP kinase pathway using PD 98059, but sensitivity to the MAP/extracellular signal-regulated kinase kinase inhibitor could be partially restored by expression of wild-type Rb. Therefore, MAP kinase activation seems to be dispensable for the growth of SCLC only in the absence of Rb expression. These data suggest that the SCF/Kit autocrine loop, through activation of Lck and subsequently MAP kinase, and the mutational inactivation of Rb contribute to the loss of G1-S phase checkpoint regulation during the pathogenesis of SCLC. Furthermore, the data demonstrate that, in established SCLC cell lines, proliferative signal transduction initiated by Kit is mediated by pathways other than the classic MAP kinase pathway.  相似文献   

15.
The protein kinase Src is frequently over-activated in advanced cancers where it modulates the signaling transduction cascade of several growth factors. The feasibility of combination treatment of Src inhibitors with chemotherapy is currently under investigation. We evaluated the anti-tumoral effect of paclitaxel (PTX) in combination with S13, a tyrosine kinase inhibitor with a prevalent specificity for Src, in a hormone-insensible prostate cancer (PCa) cell model. In vivo, combination treatment with PTX and S13 reduced dramatically PCa tumor growth with a relevant difference in the density of new blood vessels with respect to control and single treatments. This reduction was determined by a concomitant impairment of endothelial cell migration and of VEGF release by cancer cells. In fact, S13, when used alone, was sufficient to reduce tubule formation in vivo, and to inhibit VEGFR2 activation and FAK expression in endothelial cells. In addition, the combination treatment determined a significant reduction in ROS production and HIF-1 stabilization in PCa cells respect to single treatments with S13 or PTX. In conclusion, Src-inhibition could be an effective therapeutic strategy aimed at supporting the anti-angiogenic action of PTX in aggressive PCa.  相似文献   

16.
Angiogenesis is a tightly controlled process in which signaling by the receptors for vascular endothelial growth factor (VEGF) plays a key role. In order to define signaling pathways downstream of VEGF receptors (VEGFR), the kinase domain of VEGFR2 (Flk-1) was used as a bait to screen a human fetal heart library in the yeast two-hybrid system. One of the signaling molecules identified in this effort was HCPTPA, a low molecular weight, cytoplasmic protein tyrosine phosphatase. Although HCPTPA possesses no identifiable phosphotyrosine binding domains (i.e. SH2 or phosphotyrosine binding domains), it bound specifically to active, autophosphorylated VEGFR2 but not to a mutated, kinase-inactive VEGFR2. Recombinant VEGFR2 and endogenous VEGFR2 were substrates for recombinant HCPTPA, and HCPTPA was co-expressed with VEGFR2 in endothelial cell lines, suggesting that HCPTPA may be a negative regulator of VEGFR2 signal transduction. To pursue this possibility, an adenovirus directing the expression of HCPTPA was constructed. When used to infect cultured endothelial cells, this adenovirus directed high level expression of HCPTPA that resulted in impairment of VEGF-mediated VEGFR2 autophosphorylation and mitogen-activated protein kinase activation. Adenovirus-mediated overexpression of HCPTPA also inhibited VEGF-induced cellular responses (endothelial cell migration and proliferation) and inhibited angiogenesis in the rat aortic ring assay. Taken together, these findings indicate that HCPTPA may be an important regulator of VEGF-mediated signaling and biological activity. Potential interactions with other signaling pathways and possible therapeutic implications are discussed.  相似文献   

17.
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.  相似文献   

18.
Mucus hyperproduction in pulmonary obstructive diseases results from increased goblet cell numbers and possibly increased cellular mucin synthesis, occurring in response to inflammatory mediators acting via receptor tyrosine kinases (RYK) and tyrosine phosphorylation (Y-Pi) signaling pathways. Yet, increased mucin synthesis does not lead necessarily to increased secretion, as mucins are stored in secretory granules and secreted in response to extracellular signals, commonly assumed to be mediated by G protein-coupled receptors (GPCRs). We asked whether activation 1) of Y-Pi signaling pathways, in principal, and 2) of the novel PKC isoform, nPKCdelta, by Y-Pi, specifically, might lead to regulated mucin secretion. nPKCdelta in SPOC1 cells was tyrosine phosphorylated by exposure to purinergic agonist (ATPgammaS) or PMA, actions that were blocked by the Src kinase inhibitor, PP1. Mucin secretion, however, was not affected by PP1. Hence, activation of nPKCdelta by Y-Pi is unlikely to participate in GPCR-related mucin secretion. Mucin secretion from both SPOC1 and normal human bronchial epithelial (NHBE) cells was stimulated by generalized protein Y-Pi induced by the tyrosine phosphatase inhibitor, pervanadate (PV). PV-induced SPOC1 cell mucin secretion was not affected by inhibition of Src kinases (genistein or PP1), or of PI3 kinase (LY-294002). MAP kinase pathway inhibitors, RAF1 kinase inhibitor-I and U0126 (MEK), inhibited SPOC1 cell PV-induced secretion by approximately 50%. Significantly, the phospholipase C (PLC) inhibitor, U-73122, essentially abolished PV- and ATPgammaS-induced mucin secretion from both SPOC1 and NHBE cells. Hence, PLC signaling may play a key role in regulated mucin secretion, whether the event is initiated by mediators interacting with GPCRs or RYKs.  相似文献   

19.
Blood vessels form either by the assembly and differentiation of mesodermal precursor cells (vasculogenesis) or by sprouting from preexisting vessels (angiogenesis). Endothelial-specific receptor tyrosine kinases and their ligands are known to be essential for these processes. Targeted disruption of vascular endothelial growth factor (VEGF) or its receptor kdr (flk1, VEGFR2) in mouse embryos results in a severe reduction of all blood vessels, while the complete loss of flt1 (VEGFR1) leads to an increased number of hemangioblasts and a disorganized vasculature. In a large-scale forward genetic screen, we identified two allelic zebrafish mutants in which the sprouting of blood vessels is specifically disrupted without affecting the assembly and differentiation of angioblasts. Molecular cloning revealed nonsense mutations in flk1. Analysis of mRNA expression in flk1 mutant embryos showed that flk1 expression was severely downregulated, while the expression of other genes (scl, gata1, and fli1) involved in vasculogenesis or hematopoiesis was unchanged. Overexpression of vegf(121+165) led to the formation of additional vessels only in sibling larvae, not in flk1 mutants. We demonstrate that flk1 is not required for proper vasculogenesis and hematopoiesis in zebrafish embryos. However, the disruption of flk1 impairs the formation or function of vessels generated by sprouting angiogenesis.  相似文献   

20.
Exposure to anthrax causes life-threatening disease through the action of the toxin produced by the Bacillus anthracis bacteria. Lethal factor (LF), an anthrax toxin component which causes severe vascular leak and edema, is a protease which specifically degrades MAP kinase kinases (MKK). We have recently shown that p38 MAP kinase activation leading to HSP27 phosphorylation augments the endothelial permeability barrier. We now show that treatment of rat pulmonary microvascular endothelial cells with anthrax lethal toxin (LeTx), which is composed of LF and the protective antigen, increases endothelial barrier permeability and gap formation between endothelial cells through disrupting p38 signaling. LeTx treatment increases MKK3b degradation and in turn decreases p38 activity at baseline as well as after activation of p38 signaling. Consequently, LeTx treatment decreases activation of the p38 substrate kinase, MK2, and the phosphorylation of the latter's substrate, HSP27. LeTx treatment disrupts other signaling pathways leading to suppression of Erk-mediated signaling, but these effects do not correlate with LeTx-induced barrier compromise. Overexpressing phosphomimicking (pm)HSP27, which protects the endothelial permeability barrier against LeTx, blocks LeTx inactivation of p38 and MK2, but it does not block MKK3b degradation or Erk inactivation. Our results suggest that LeTx might cause vascular leak through inactivating p38-MK2-HSP27 signaling and that activating HSP27 phosphorylation specifically restores p38 signaling and blocks anthrax LeTx toxicity. The fact that barrier integrity could be restored by pmHSP27 overexpression without affecting degradation of MKK3b, or inactivation of Erk, suggests a specific and central role for p38-MK2-HSP27 in endothelial barrier permeability regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号