首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cell-free preparations of the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana, were analyzed for thioredoxins and ferredoxin-thioredoxin reductase. Three distinct forms of thioredoxin were identified in Kalanchoë leaves, two of which specifically activated fructose 1,6-bisphosphatase (designated f1 and f2) and a third which activated NADP-malate dehydrogenase (thioredoxin m). The apparent molecular weight of both forms of thioredoxin f was 11,000 and that of thioredoxin m was 10,000. In parallel studies, ferredoxin and ferredoxin-thioredoxin reductase were purified from Kalanchoë leaf preparations. Kalanchoë ferredoxin-thioredoxin reductase was similar to that of C3 and C4 plants in molecular weight (31,000) and immunological cross-reactivity. Kalanchoë ferredoxin-thioredoxin reductase exhibited an affinity for ferredoxin as demonstrated by its binding to an immobilized ferredoxin affinity column. The purified components of the Kalanchoë ferredoxin-thioredoxin system could be recombined to function in the photoregulation of chloroplast enzymes. The data suggest that the ferredoxin/thioredoxin system plays a role in enzyme regulation of all higher plants irrespective of whether they show C3, C4, or CAM photosynthesis.  相似文献   

2.
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpXC) and one on plasmid pBM19 (GlpXP), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpXC and glpXP from B. methanolicus. GlpXP and GlpXC share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn2+ ions and inhibited by Li+, but differed in terms of the kinetic parameters. GlpXC showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s−1 mM−1 and 14 ± 0.5 μM, respectively) than GlpXP (8.8 s−1 mM−1 and 440 ± 7.6 μM, respectively), indicating that GlpXC is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpXP but not for GlpXC. Based on these in vitro data, GlpXP is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.  相似文献   

3.
Malate synthesis by dark carbon dioxide fixation in leaves   总被引:4,自引:4,他引:0       下载免费PDF全文
The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment.

A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%.

The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

  相似文献   

4.
Enzymes that are regulated by the ferredoxin/thioredoxin system in chloroplasts — fructose-1,6-bisphosphatase (FBPase), sedoheptulose-1,7-bisphosphatase purified from two different types of photosynthetic prokaryotes (cyanobacteria, purple sulfur bacteria) and tested for a response to thioredoxins. Each of the enzymes from the cyanobacterium Nostoc muscorum, an oxygenic organism known to contain the ferredoxin/thioredoxin system, was activated by thioredoxins that had been reduced either chemically by dithiothreitol or photochemically by reduced ferredoxin and ferredoxin-thioredoxin reductase. Like their chloroplast counterparts, N. muscorum FBPase and SBPase were activated preferentially by reduced thioredoxin f. SBPase was also partially activated by thioredoxin m. PRK, which was present in two regulatory forms in N. muscorum, was activated similarly by thioredoxins f and m. Despite sharing the capacity for regulation by thioredoxins, the cyanobacterial FBPase and SBPase target enzymes differed antigenically from their chloroplast counterparts. The corresponding enzymes from Chromatium vinosum, an anoxygenic photosynthetic purple bacterium found recently to contain the NADP/thioredoxin sytem, differed from both those of cyanobacteria and chloroplasts in showing no response to reduced thioredoxin. Instead, C. vinosum FBPase, SBPase, and PRK activities were regulated by a metabolite effector, 5-AMP. The evidence is in accord with the conclusion that thioredoxins function in regulating the reductive pentose phosphate cycle in oxygenic prokaryotes (cyanobacteria) that contain the ferredoxin/thioredoxin system, but not in anoxygenic prokaryotes (photosynthetic purple bacteria) that contain the NADP/thioredoxin system. In organisms of the latter type, enzyme effectors seem to play a dominant role in regulating photosynthetic carbon dioxide assimilation.  相似文献   

5.
Inhibitor experiments indicate that light effect mediatorII which is reductively activated by transfer of electrons from the photosynthetic electron transport system at or beyond ferredoxin, is involved in activation by light of fructose-1,6-bisphosphatase in the pea plant. Activation proceeds optimally when the pH is low and Mg2+ is 10 millimolar. Modulation by light results in increases in maximal velocity, apparently as a result of changes in enzyme conformation. Pea leaf thylakoids are effective in modulating the activity of glyceraldehyde-3-phosphate dehydrogenase but not of fructose-1,6-bisphosphatase or glucose-6-phosphate dehydrogenase in Kalanchoë stromal extracts. There is apparently species specificity for modulation of some, but not all, of the modulatable enzymes.  相似文献   

6.
The activity and extent of light activation of three photosynthetic enzymes, pyruvate,Pi dikinase, NADP-malate dehydrogenase (NADP-MDH), and fructose 1,6-bisphosphatase (FBPase), were examined in maize (Zea mays var Royal Crest) leaves relative to the rate of photosynthesis during induction and under varying light intensities. There was a strong light activation of NADP-MDH and pyruvate,Pi dikinase, and light also activated FBPase 2- to 4-fold. During the induction period for whole leaf photosynthesis at 30°C under high light, the time required to reach half-maximum activation for all three enzymes was only 1 minute or less. After 2.5 minutes of illumination the enzymes were fully activated, while the photosynthetic rate was only at half-maximum activity, indicating that factors other than enzyme activation limit photosynthesis during the induction period in C4 plants.

Under steady state conditions, the light intensity required to reach half-maximum activation of the three enzymes was similar (300-400 microEinsteins per square meter per second), while the light intensity required for half-maximum rates of photosynthesis was about 550 microEinsteins per square meter per second. The light activated levels of NADP-MDH and FBPase were well in excess of the in vivo activities which would be required during photosynthesis, while maximum activities of pyruvate,Pi dikinase were generally just sufficient to accommodate photosynthesis, suggesting the latter may be a rate limiting enzyme.

There was a large (5-fold) light activation of FBPase in isolated bundle sheath strands of maize, whereas there was little light activation of the enzyme in isolated mesophyll protoplasts. In mesophyll protoplasts the enzyme was largely located in the cytoplasm, although there was a low amount of light-activated enzyme in the mesophyll chloroplasts. The results suggest the chloroplastic FBPase in maize is primarily located in the bundle sheath cells.

  相似文献   

7.
The recently cloned cDNA for pea chloroplast thioredoxin f was used to produce, by PCR, a fragment coding for a protein lacking the transit peptide. This cDNA fragment was subcloned into a pET expression vector and used to transform E. coli cells. After induction with IPTG the transformed cells produce the protein, mainly in the soluble fraction of the broken cells. The recombinant thioredoxin f has been purified and used to raise antibodies and analysed for activity. The antibodies appear to be specific towards thioredoxin f and do not recognize other types of thioredoxin. The recombinant protein could activate two chloroplastic enzymes, namely NADP-dependent malate dehydrogenase (NADP-MDH) and fructose 1,6-bisphosphatase (FBPase), both using dithiothreitol as a chemical reductant and in a light-reconstituted/thylakoid assay. Recombinant pea thioredoxin f turned out to be an excellent catalyst for NADP-MDH activation, being the more efficient than a recombinant m-type thioredoxin of Chlamydomonas reinhardtii and the thioredoxin of E. coli. At the concentrations of thioredoxin used in the target enzyme activation assays only the recombinant thioredoxin f activated the FBPase.  相似文献   

8.
Leaf cytosolic fructose-1,6-bisphosphatase (FBPase), partially purified from both spinach (Spinacia oleracea, var Hipack) and peas (Pisum sativum, var Progress No. 9), is reversibly inactivated by exposure to low temperature. Thus, even though assays were conducted at 22°C, samples incubated at 0 to 12°C had greatly reduced activity relative to controls maintained at 22°C. Following incubation at 22°C prior to assay, the inactivated samples regained their initial activity. Chloroplast FBPase, by contrast, was unaffected by low temperature treatment. This feature as well as lack of a response of cytosolic FBPase to thioredoxins f or cf and to chloroplast FBPase antibody indicate that the FBPase isozymes of leaves are different proteins.  相似文献   

9.
Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin Cycle enzyme exclusive to chloroplasts and is involved in photosynthetic carbon fixation. The two cysteine residues involved in its redox regulation have been identified by site-directed mutagenesis. They are four residues apart in a predicted loop between two alpha helices and probably form a disulphide bond when oxidised. Three-dimensional modelling of SBPase has been performed using crystallographic data from the structurally homologous pig fructose-1,6-bisphosphatase (FBPase). The results suggest that formation of the disulphide bridge in SBPase is directly analogous to the allosteric regulation of pig FBPase by AMP in terms of the resulting structural changes. Similar changes are thought to occur in chloroplast FBPase, which like SBPase, is also redox regulated and involved in carbon fixation. From the results presented here it appears that the same basic mechanism for the allosteric regulation of enzymic activity operates in the FBPases and SBPase but that the sites at which the regulatory ligands (AMP or thioredoxin) exert their effects are different in each  相似文献   

10.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

11.
The responses of the vacuolar membrane (tonoplast) proton-pumping inorganic pyrophosphatase (H+-PPase) from oat (Avena sativa L.) roots to changes in Mg2+ and pyrophosphate (PPi) concentrations have been characterized. The kinetics were complex, and reaction kinetic models were used to determine which of the various PPi complexes were responsible for the observed responses. The results indicate that the substrate for the oat root vacuolar H+-PPase is Mg2PPi and that this complex is also a non-competitive inhibitor. In addition, the enzyme is activated by free Mg2+ and competitively inhibited by free PPi. This conclusion differs from that reached in previous studies, in which it was proposed that MgPPi is the substrate for plant vacuolar H+-PPases. However, models incorporating MgPPi as a substrate were unable to describe the kinetics of the oat H+-PPase. It is demonstrated that models incorporating Mg2PPi as the substrate can describe some of the published kinetics of the Kalanchoë daigremontiana vacuolar H+-PPase. Calculations of the likely concentrations of Mg2PPi in plant cytoplasm suggest that the substrate binding site of the oat vacuolar H+-PPase would be about 70% saturated in vivo.  相似文献   

12.
Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells   总被引:7,自引:0,他引:7  
Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system—NADP—thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.Abbreviations DTNB dithiolbis(2-nitrobenzoic acid) - FBPase fructose-1,6-bisphosphatase - FTR terredoxin-thioredoxin, reductase - NADP-MDH NADP-malate dehydrogenase - NTR NADP-thioredoxin reductase - SDS sodium-dodecyl sulfate  相似文献   

13.
The mechanism by which calcium inhibits the activity of muscle fructose 1,6-bisphosphatase (FBPase) and destabilizes its interaction with aldolase, regulating glycogen synthesis from non-carbohydrates in skeletal muscle is poorly understood. In the current paper, we demonstrate evidence that Ca2+ affects conformation of the catalytic loop 52–72 of muscle FBPase and inhibits its activity by competing with activatory divalent cations, e.g. Mg2+ and Zn2+. We also propose the molecular mechanism of Ca2+-induced destabilization of the aldolase–FBPase interaction, showing that aldolase associates with FBPase in its active form, i.e. with loop 52–72 in the engaged conformation, while Ca2+ stabilizes the disengaged-like form of the loop.  相似文献   

14.
NAD-specific “malic” enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO42−, suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn2+, which cannot be replaced by NADP or Mg2+. For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn2+, and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 μmole/hr·mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO2 for recycling during cessation of gas exchange in periods of severe drought.  相似文献   

15.

Background

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario.

Results

Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations.

Conclusions

There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition ??from specialist to generalist??. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.  相似文献   

16.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

17.
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.  相似文献   

18.
Previous kinetic characterization of Escherichia coli fructose 1,6-bisphosphatase (FBPase) was performed on enzyme with an estimated purity of only 50%. Contradictory kinetic properties of the partially purified E. coli FBPase have been reported in regard to AMP cooperativity and inactivation by fructose-2,6-bisphosphate. In this investigation, a new purification for E. coli FBPase has been devised yielding enzyme with purity levels as high as 98%. This highly purified E. coli FBPase was characterized and the data compared to that for the pig kidney enzyme. Also, a homology model was created based upon the known three-dimensional structure of the pig kidney enzyme. The kcat of the E. coli FBPase was 14.6 s−1 as compared to 21 s−1 for the pig kidney enzyme, while the Km of the E. coli enzyme was approximately 10-fold higher than that of the pig kidney enzyme. The concentration of Mg2+ required to bring E. coli FBPase to half maximal activity was estimated to be 0.62 mM Mg2+, which is twice that required for the pig kidney enzyme. Unlike the pig kidney enzyme, the Mg2+ activation of the E. coli FBPase is not cooperative. AMP inhibition of mammalian FBPases is cooperative with a Hill coefficient of 2; however, the E. coli FBPase displays no cooperativity. Although cooperativity is not observed, the E. coli and pig kidney enzymes show similar AMP affinity. The quaternary structure of the E. coli enzyme is tetrameric, although higher molecular mass aggregates were also observed. The homology model of the E. coli enzyme indicated slight variations in the ligand-binding pockets compared to the pig kidney enzyme. The homology model of the E. coli enzyme also identified significant changes in the interfaces between the subunits, indicating possible changes in the path of communication of the allosteric signal.  相似文献   

19.
To clarify the kinetic characteristics and ionic requirements of the tonoplast H+-translocating inorganic pyrophosphatase (H+-PPiase), PPi hydrolysis and PPi-dependent H+ transport were studied in tonoplast vesicles isolated from leaf mesophyll tissue of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. The tonoplast H+-PPiase showed an absolute requirement for a monovalent cation and exhibited hyperbolic kinetics with respect to cation concentration. H+-PPiase activity was maximal in the presence of K+ (K50 approximately 3 millimolar), with PPi-dependent H+ transport being more selective for K+ than PPi hydrolysis. When assayed in the presence of 50 millimolar KCl at fixed PPi concentrations, H+-PPiase activity showed sigmoidal kinetics with respect to total Mg concentration, reflecting a requirement for a Mg/PPi complex as substrate and free Mg2+ for activation. At saturating concentrations of free Mg2+, H+-PPiase activity exhibited Michaelis-Menten kinetics towards MgPPi2− but not Mg2PPi, demonstrating that MgPPi2− was the true substrate of the enzyme. The apparent Km (MgPPi2−) for PPi hydrolysis (17 micromolar) was significantly higher than that for PPi-dependent H+ transport (7 micromolar). Free Mg2+ was shown to be an allosteric activator of the H+-PPiase, with Hill coefficients of 2.5 for PPi hydrolysis and 2.7 for PPi-dependent H+ transport. Half-maximal H+-PPiase activity occurred at a free Mg2+ concentration of 1.1 millimolar, which lies within the range of accepted values for cytosolic Mg2+. In contrast, cytosolic concentrations of K+ and MgPPi2− appear to be saturating for H+-PPiase activity. We propose that one function of the H+-PPiase may be to act as an ancillary enzyme that maintains the proton-motive force across the vacuolar membrane when the activity of the tonoplast H+-ATPase is restricted by substrate availability. As ATP levels decline in the cytosol, free Mg2+ would be released from the MgATP2− complex, thereby activating the tonoplast H+-PPiase.  相似文献   

20.
The regulation of photosynthetic yield at the genetic level has largely focused on manipulation of the catalytic enzymes in the Calvin cycle by genetic engineering. In order to investigate the contribution of increased enzymatic activity in the Calvin cycle on photosynthetic yield, the rice fructose-1,6-bisphosphate aldolase (FBA), spinach triosephosphate isomerase (TPI) and wheat fructose-1,6-bisphosphatase (FBPase) genes were cloned in tandem and co-overexpressed in cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzymatic activities of FBA, TPI and FBPase, as well as sedoheptulose-1,7-bisphosphatase (SBPase), were remarkably increased in transgenic cells relative to the wild-type. The photosynthetic yield, as reflected by photosynthetic O2 evolution and dry cellular weight, was also markedly increased in transgenic cells versus wide-type cells. The activity of SBPase is considered the most important factor for ribulose-1,5-bisphosphate (RuBP) regeneration in the Calvin cycle, and increased activity of TPI alone in transgenic cells does not stimulate photosynthetic yield. Thus, the increased activity of FBA and FBPase, but not TPI, significantly improved photosynthetic yield in transgenic cells by stimulating SBPase activity and consequently accelerating the RuBP regeneration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号