首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of nonprotein chromophore removal on neocarzinostatin action   总被引:2,自引:0,他引:2  
  相似文献   

2.
L F Povirk  I H Goldberg 《Biochemistry》1980,19(21):4773-4780
The methanol-extracted, nonprotein chromophore of neocarzinostatin (NCS), which has DNA-degrading activity comparable to that of the native antibiotic, was found to have a strong affinity for DNA. Binding of chromophore was shown by (1) quenching by DNA of the 440-nm fluorescence and shifting of the emission peak to 420 nm, (2) protection by DNA against spontaneous loss of activity in aqueous solution, and (3) inhibition by DNA of the spontaneous generation of 490-nm fluorescence. Good quantitative correlation was found between these three methods in measuring chromophore binding. There was nearly a 1:1 correspondence between loss of chromophore activity and generation of 490-nm fluorescence, suggesting spontaneous degradation of active chromophore to a highly fluorescent product. Chromophore showed a preference for DNA high in adenine + thymine content in both fluorescence quenching and protection studies. NCS apoprotein, which is known to bind and protect active chromophore, quenched the 440-nm fluorescence, shifted the emission peak to 420 nm, and inhibited the generation of 490-nm fluorescence. Chromophore had a higher affinity for apoprotein than for DNA. Pretreatment of chromophore with 2-mercaptoethanol increased the 440-nm fluorescence seven-fold and eliminated the tendency to generate 490-nm fluorescence. The 440-nm fluorescence of this inactive material was also quenched by DNA and shifted to 420 nm, indicating an affinity for DNA comparable to that of untreated chromophore. However, its affinity for apoprotein was much lower than that of untreated chromophore. Both 2-mercapto-ethanol-treated and untreated chromophore unwound supercoiled pMB9 DNA, suggesting intercalation by both molecules. Since no physical evidence for interaction of native neocarzinostatin with DNA has been found, it is likely that dissociation of the chromophore from the protein and association with DNA are important steps in degradation of DNA by neocarzinostatin.  相似文献   

3.
L S Kappen  I H Goldberg 《Biochemistry》1980,19(21):4786-4790
The methanol-extracted, nonprotein chromophore of the protein antibiotic neocarzinostatin (NCS), which possesses the full in vitro and in vivo deoxyribonucleic acid (DNA) strand-breaking activities and the ability to inhibit DNA synthesis and growth in HeLa cells of the holoantibiotic, is much more labile to inactivation by heat, 2-mercaptoethanol, long-wavelength UV light, and pH values above 4.8. Inactivation is inversely related to the methanol concentration. The pH activity profile of the isolated chromophore extends to pH values below 7.0. Chromophore inactivation is specifically blocked by the apoprotein of NCS; 100-fold higher concentrations of the apoprotein of another protein antibiotic, auromomycin, gave similar protection, whereas bovine serum albumin is even less effective. The chromophore, and not the apoprotein, is inactivated by heat or light (360 nm) as determined by both activity and isoelectric focusing experiments. In contrast to other chromophoric antibiotic substances (daunorubicin and the extracted chromophore of aurodomomycin), the NCS chromophore interacts irreversibly with HeLa cells at 0 degrees C in serum-free medium so as to inhibit subsequent DNA synthesis at 37 degrees C. Such interaction at 0 degrees C is very rapid, reaching 50% completion in about 15 s, and is not found with native NCS or when apo-NCS is added before the chromophore or when serum is included in the preincubation at 0 degrees C. Washing with apo-NCS or serum-containing (or-free) medium after preincubation of the cells with the chromophore at 0 degrees C fails to reverse the subsequenct inhibition of DNA synthesis.  相似文献   

4.
The inhibitory effect of a nonprotein chromophore removed from neocarzinostatin on protein phosphorylation by nuclear protein kinase in vitro has been studied. Low levels of the chromophore greatly inhibited protein phosphorylation in vitro. This inhibition, however, was not selectively dependent on the indicated kinases and their different phosphate acceptors (histones and non-histone protein). In contrast, the protein component (apoprotein) of neocarzinostatin did not affect the phosphorylation even at a concentration of 400-times higher than that of the chromophore. Moreover, apoprotein suppressed the chromophore-induced inhibition of protein phosphorylation in vitro in proportion to the apoprotein concentrations. Kinetic and analytical experiments suggest that the chromophore-induced inhibition of protein phosphorylation seems to be due to the binding of the chromophore to the kinases. In addition, we found that ultraviolet irradiation as well as methanol extraction can release the chromophore from neocarzinostatin, but it exhibits no inhibitory activity of DNA synthesis in growing cells. The fact that the chromophore-induced inhibition of protein phosphorylation in vitro was not sensitive to ultraviolet irradiation, which rapidly inactivated the ability of the chromophore to induce DNA degradation in vitro, suggests that there are different actions involved in the two inhibitions induced by the chromophore which is removed from neocarzinostatin.  相似文献   

5.
6.
7.
8.
Production in a chemically defined medium of a free chromophore component (free NCS-chr) of an antitumor antibiotic neocarzinostatin (NCS) by Streptomyces carzinostaticus var. F-41 was improved by the use of l-threonine or l-asparagine as a sole nitrogen source. Under the conditions established, the yield of free NCS-chr was comparable to that obtained in a control medium containing casamino acids.  相似文献   

9.
10.
Zinostatin stimalamer (ZSS) is a new anticancer agent derived from neocarzinostatin (NCS), which is synthesized by conjugation of one molecule of NCS and two molecules of poly(styrene-co-maleic acid). ZSS exhibited potent in vitro and in vivo antitumor activity in preclinical experiments, and a clinical trial of the intra-arterial administration of ZSS with iodized oil on hepatocellular carcinoma showed potent antitumor activity. We investigated the effect of ZSS and NCS on antitumor resistance and found that pretreatment with either drug suppressed the growth of MethA tumors in Balb/c mice and induced tumor eradication when given separately by single administration at therapeutic doses between 1 day and 4 weeks before tumor transplantation. The findings that the cytocidal activity of these drugs was not detected in vivo at the time of tumor transplantation and that tumor regression was preceded by a period of transient growth suggested that tumor regression was due to host-mediated antitumor activity induced by these drugs. Pretreatment with ZSS or NCS also suppressed the growth of Colon 26 carcinoma and Sarcoma 180. The finding that NCS showed the same effect as ZSS suggests that poly(styrene-comaleic acid) is not essential for the induction of hostmediated antitumor activity. Furthermore, apo-ZSS, which lacks cytocidal activity, did not induce antitumor activity. From this, it is suggested that the cytocidal effect of ZSS involves the induction of hostmediated antitumor resistance. In athymic Balb/cnu/nu mice, pretreatment with ZSS or NCS did not induce tumor eradication, suggesting that mature T lymphocytes play an important role in tumor eradication. Challenging MethA was rejected withot transient growth in mice that had been cured of MethA, but challenging Colon 26 was not, showing that anti-MethA resistance was augmented selectively in the MethaA-eradicated mice. Splenocytes from MethA-bearing mice pretreated with the drug showed tumorneutralizing activity beginning 14 days after tumor transplantation. Tumor-neutralizing activity was only induced after MethA transplantation. The effector cells of this tumor-neutralizing activity were Thy1.2+ T lymphocytes that had been passed through a nylonwool column, but no significant augmentation of cell-mediated cytotoxic activity of splenocytes from MethA-eradicated mice was observed in vitro.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Chromatin is the in vivo target site for neocarzinostatin, a DNA strand scission antitumor drug. The effect of neocarzinostatin and its active chromophore component on HeLa cell chromatin is described here. Chromatin consisting of a mixture of mono-, di-, tri- and larger nucleosome fragments is prepared by micrococcal nuclease digestion of HeLa cell nuclei. Drug-induced conversion of chromatin to smaller sized fragments is measured by electrophoresis of the DNA on non-denaturing 4% polyacrylamide gels. Chromatin breakdown measured under these conditions is double-stranded in nature. In the presence of 2 mM dithiothreitol, neocarzinostatin causes degradation of large chromatin fragments and a loss of distinct nucleosome peaks. Detection of chromatin breakdown by neocarzinostatin is dependent upon the concentration of chromatin in the assay. When chromatin is increased from 14 to 70 micrograms/ml, changes in the larger fragments caused by 100 micrograms/ml neocarzinostatin become less obvious are are almost undetectable at 140 micrograms/ml chromatin. No change is observed when chromatin is treated with either neocarzinostatin or its chromophore in the absence of dithiothreitol. For detectable levels of chromatin degradation, 10 micrograms/ml neocarzinostatin is required compared to only 2.5 microgram/ml chromosome (expressed in microgram equivalent neocarzinostatin). Such degradation also occurs more rapidly with chromophore than with neocarzinostatin. Digestion of chromatin with neocarzinostatin continues for at least 30 min at 37 degrees C, while similar degradation caused by chromophore is complete in 1 min. Neocarzinostatin levels which actively degrade isolated chromatin can also effect release of soluble chromatin from intact nuclei. The released chromatin can serve as a substrate for micrococcal nuclease digestion. Such chromatin studies should prove useful in characterizing the mechanism of action of DNA reactive drugs such as neocarzinostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号