首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J M Conlon  N Chartrel  H Vaudry 《Peptides》1992,13(1):145-149
A peptide belonging to the pancreatic polypeptide (PP) family was isolated in pure form from the intestine of the European green frog (Rana ridibunda). The primary structure of the peptide was established as: Tyr-Pro-Pro-Lys-Pro-Glu-Asn-Pro-Gly-Glu10-Asp-Ala- Ser-Pro-Glu-Glu-Met-Thr-Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile- Asn-Leu30-Val - Thr-Arg-Gln-Arg-Tyr-NH2. This amino acid sequence shows moderate structural similarity to human PYY (75% identity) but stronger similarity to the PP family peptides isolated from the pancreas of the salmon (86%) and dogfish (83%). The data suggest that the two putative duplications of an ancestral PP family gene that have given rise to PP, PYY and NPY in mammals had already taken place by the time of the appearance of the amphibia. In fish, however, only a single duplication has occurred, giving rise to NPY in nervous tissue and a PYY-related peptide in both pancreas and gut.  相似文献   

2.
Neuropeptide Y (NPY) is a 36-amino-acid peptide that is widely and abundantly expressed in the central nervous system of all vertebrates investigated. Related peptides have been found in various vertebrate groups: peptide YY (PYY) is present in gut endocrine cells of many species and pancreatic polypeptide (PP) is made in the pancreas of all tetrapods. In addition, a fish pancreatic peptide called PY has been reported in three species of fishes. The evolutionary relationships of fish PY have been unclear and it has been proposed to be the orthologue (species homologue) of each of the three tetrapod peptides. We demonstrate here with molecular cloning techniques that the sea bass (Dicentrarchus labrax), an acanthomorph fish, has orthologues of both NPY and PYY as well as a separate PY peptide. Sequence comparisons suggest that PY arose as a copy of the PYY gene, presumably in a duplication event separate from the one that generated PP from PYY in tetrapods. PY sequences from four species of fish indicate that, similar to PP, PY evolves much more rapidly than NPY and PYY. The physiological role of PY is unknown, but we demonstrate here that sea bass PY, like NPY and PYY but in contrast to the tetrapod PP, is expressed in brain.  相似文献   

3.
1. The neuropeptide Y (NPY) family of peptides includes also the gut endocrine peptide YY (PYY), tetrapod pancreatic polypeptide (PP), and fish pancreatic peptide-tyrosine (PY). All peptides are 36 amino acids long.2. Sequences from many types of vertebrates show that NPY has remained extremely well conserved throughout vertebrate evolution with 92% identity between mammals and cartilaginous fishes.3. PYY has 97–100% identity between cartilaginous fishes and bony fishes, but is less conserved in amphibians and mammals (83% identity between amphibians and sharks and 75% identity between mammals and sharks).4. NPY and PYY share 70–80% identity in most species.5. Both NPY and PYY were present in the early vertebrate ancestor because both peptides have been found in lampreys.6. The tissue distribution appears to have been largely conserved between phyla, except that PYY has more widespread neuronal expression in lower vertebrates.7. Pancreatic polypeptide has diverged considerably among tetrapods leaving only 50% identity between mammals, birdsJreptiles and frogs.8. Several lines of evidence suggest that the PP gene arose by duplication of the PYY gene, probably in the early evolution of the tetrapods.9. The pancreatic peptide PY found in anglerfish and daddy sculpin may have resulted from an independent duplication of the PYY gene.10. The relationships of the recently described mollusc and worm peptides NPF and PYF with the NPY family still appear unclear.  相似文献   

4.
Evolutionary relationships between neuroendocrine peptides are often difficult to resolve across divergent phyla due to independent duplication events in different lineages. Thanks to peptide purification and molecular cloning in many different species, the situation is beginning to clear for the neuropeptide Y (NPY) family, which also includes peptide YY (PYY), the tetrapod pancreatic polypeptide (PP) and the fish pancreatic peptide Y (PY). It has long been assumed that the first duplication to occur in vertebrate evolution generated NPY and PYY, as both of these are found in all gnathostomes as well as lamprey. Evidence from other gene families show that this duplication was probably a chromosome duplication event. The origin of a second PYY peptide found in lamprey remains to be explained. Our recent cloning of NPY, PYY and PY in the sea bass proves that fish PY is a separate gene product. We favour the hypothesis that PY is a duplicate of the PYY gene and that it may have occurred late in fish evolution, as PY has so far only been found in acanthomorph fishes. Thus, this duplication seems to be independent of the one that generate PP from PYY in tetrapods, although both tetrapod PP and fish PY are expressed in the pancreas. Studies in the sea bass and other fish show that PY, in contrast to PP, is expressed in the nervous system. We review the literature on the distribution and functional aspects of the various NPY-family peptides in vertebrates.  相似文献   

5.
The amino acid sequence of a peptide isolated from the Pacific salmon (Oncorhynchus kisutch) endocrine pancreas has been determined. This simple 36 residue peptide is a member of the pancreatic polypeptide family. It contains a C-terminal tyrosinamide and is more homologous with porcine neuropeptide Y (NPY) (83%) and peptide YY (75%) than any of the previously characterized pancreatic polypeptides (PP). This peptide appears to be the major but not the only representative of this family of peptides present in the endocrine pancreas of this fish. This peptide is referred to as salmon pancreatic polypeptide (salmon PP).  相似文献   

6.
Identification and characterization of the emetic effects of peptide YY   总被引:1,自引:0,他引:1  
Emesis was noted following intravenous bolus injections into dogs of a chromatographic subfraction derived from porcine small intestinal tissue extracts. The active agent was isolated from this subfraction using sequential ion-exchange and reverse-phase HPLC and demonstrated to be the recently identified regulatory peptide PYY. The threshold dose for PYY-induced emesis in the dog is less than 120 pmol/kg. Emesis was sometimes seen following large IV bolus doses of neuropeptide Y (NPY), but none was seen following IV injection of pancreatic polypeptide (PP). Dogs prepared with discrete, bilateral lesions of the area postrema were refractory to a suprathreshold emetic dose of PYY. PYY is the most potent, circulating emetic peptide identified to date.  相似文献   

7.
By affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, we identified a novel cell surface receptor on intact rat cells, which bound, with similar dissociation constants, pancreatic polypeptide (PP), neuropeptide Y (NPY) and peptide YY (PYY), the members of the PP family. The receptor was detected on pancreatic islet and acinar cells, hepatocytes and epithelial cells of the stomach, duodenum and small intestine. Its molecular weight was estimated to be 65,000, and the cross-linking of [125I] labeled ligands was inhibited by an excess of unlabeled PP, NPY or PYY. The results suggest that the 65-kDa molecule is a common receptor for PP family peptides.  相似文献   

8.
Spinal and peripheral modulation of pentagastrin-stimulated gastric acid secretion by the pancreatic polypeptide-fold (PP-fold) peptides, neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), in urethane-anesthetized rats was evaluated. Neuropeptide Y, PYY, and PP (400 pmol) were administered via intravenous (IV) and intrathecal (IT) injections. The 2 antagonist, yohimbine, was used to evaluate the role of the 2 adrenergic receptors in the modulation of pentagastrin-stimulated gastric acid secretion by NPY, PYY, and PP. Peptide YY and PP (IV) rapidly increased pentagastrin-stimulated gastric acid secretion. Peptide YY and PP (IT) increased pentagastrin-stimulated gastric acid secretion following administration into the thoracic (T8–T10) region of the spinal cord. The 2 adrenergic receptor antagonist, yohimbine, did not modify the increases in pentagastrin-stimulated gastric acid secretion following PYY and PP (IV or IT) administration. Neuropeptide Y (IT) decreased pentagastrin-stimulated gastric acid secretion. However, in the presence of 2 adrenergic receptor blockade, pentagastrin-stimulated gastric acid secretion was potentiated by NPY (IT) administration. Therefore, the inhibitory effect of NPY (IT) on pentagastrin-stimulated gastric acid secretion required the activation of 2 adrenergic receptors in the spinal cord of rats. Mean arterial blood pressure (MAP) was increased immediately following NPY and PYY (IV) administration. During the same time period, PP (IV) decreased MAP in anesthetized rats. Mean arterial blood pressure was rapidly increased by NPY and PYY (IT) in anesthetized rats. The increase in MAP following PYY (IT) was partially attenuated in the presence of yohimbine. The modulation of MAP and gastric acid secretion by the PP-fold peptides occurred by independent mechanisms at spinal and peripheral sites in the rat. The modulation of pentagastrin-stimulated gastric acid secretion by PYY and PP in rats differed from that of the third member of the PP-fold family, NPY, following spinal and peripheral administration.  相似文献   

9.
Neuropeptide Y (NPY) and peptide YY (PYY) are members of the pancreatic polypeptide family which have a high degree of primary and tertiary structural homology. They function as neurotransmitters and humoral agents in central nervous system and gastrointestinal function. During the last two decades, NPY body fluid concentrations and NPY/PYY brain receptor numbers have been demonstrated to be altered during the course of Alzheimer's disease. Recent research has shown that both NPY and PYY may be involved in aluminum metabolism in animal models. A brief discussion of the structure, biological activity and possible involvement of these peptides in aluminum metabolism and Alzheimer's disease is contained herein.  相似文献   

10.
Receptors for NPY in peripheral tissues bioassays   总被引:2,自引:0,他引:2  
Pheng LH  Regoli D 《Life sciences》2000,67(8):847-862
Neuropeptide Y (NPY) and its congeners, peptide YY (PYY) and the pancreatic polypeptide (PP), have a large spectrum of peripheral actions. NPY is found in peripheral neurons, co-localized or not with noradrenaline; PYY and PP are expressed in endocrine cells of the pancreas and in the intestine of vertebrates. NPY is the most abundant peptide in the brain and is involved in the regulation of food intake and of circadian rhythm. It intervenes also in the process of anxiety and memory. NPY is a potent vasoconstrictor, a cardiac stimulant, and may affect the gut through enteric neurons. PYY and PP act mainly on the gastrointestinal system; however, when in blood, they can cross-react with functional sites elsewhere and replace NPY in some parts of the brain (e.g. regions involved in feeding behavior). These peptides act through G protein coupled receptors (GPCR) of which five different types are known and have been cloned (1,2); functional sites (receptors) for NPY have been found in vessels, the gut, and in vasa deferentia (3-6).  相似文献   

11.
Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.  相似文献   

12.
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.  相似文献   

13.
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.  相似文献   

14.
AIM: To investigate the effects of members of the pancreatic polypeptide family on migrating myoelectric complexes in rats in vivo. METHODS: Rats were supplied with bipolar electrodes at 5 (duodenum), 15 and 25 cm (jejunum) distal to pylorus for electromyography. The natural ligands neuropeptide Y, pancreatic polypeptide, peptide YY1-36 and peptide YY3-36 were infused IV at doses of 0.5-400 pmol kg(-1) min(-1). The mechanisms of action were studied after pre-treatment with N(omega)-nitro-L-arginine (L-NNA) 1 mg kg(-1), guanethidine 3 mg kg(-1) and in bilaterally vagotomized animals. RESULTS: PP inhibited myoelectrical activity dose-dependently in both the duodenum (ED50 5.8 pmol kg(-1) min(-1)) and jejunum (2.6 pmol kg(-1) min(-1)). PYY1-36 and PYY3-36 also had inhibitory effect in the jejunum (4.4 and 130 pmol kg(-1) min(-1), respectively). PYY1-36 had no significant effect in the duodenum, whereas PYY3-36 stimulated myoelectrical activity at the highest doses. NPY was without effect. In the jejunum neither L-NNA, guanethidine or vagotomy had any significant influence on the inhibitory effects of PP, PYY1-36 and PYY3-36. In the duodenum, the effect of PP was inhibited by guanethidine, but not L-NNA or vagotomy. The stimulatory effect of PYY3-36 in the duodenum was blocked by L-NNA and vagotomy, whereas guanethidine was without effect. CONCLUSION: Peptides of the PP family modulate small bowel motility differentially. Whereas their general effect is inhibitory in the jejunum, the mixing duodenal compartment is stimulated by PYY3-36, suggested to reflect receptor distribution distinction in the gut. This implicates distribution of distinct receptors in the gut being activated by either peptide.  相似文献   

15.
Functional CCK-A and Y2 receptors in guinea pig esophagus   总被引:3,自引:0,他引:3  
Effects of cholecystokinin octapeptide (CCK-8), peptide YY (PPY), neuropeptide Y (NPY) and their analogs on muscle contractions of esophageal strips were investigated. CCK-8 induced a tetrodotoxin and atropine-sensitive contraction. The relative potencies for CCK related peptides to induce contractions were CCK-8 > desulfated CCK-8 > gastrin-17-I. The CCK-A receptor antagonist L-364,718 was 300-fold more potent than the CCK-B receptor antagonist L-365,260 at inhibiting CCK-8-induced contraction. These indicate that neural CCK-A receptors mediate this contraction. PYY or NPY did not cause muscle contraction or inhibit muscle contraction induced by carbachol, endothelin-1 or KCl. However, both PYY and NPY concentration-dependently inhibited contraction induced by CCK-8. This inhibition was not affected by nitric oxide (NO) synthase inhibitors L-NMMA or L-NAME. The relative potencies of PYY related peptides to inhibit CCK-8 induced contraction were PYY > NPY > NPY13-36 > [Leu(31), Pro(34)]NPY > pancreatic polypeptide (PP). We conclude that CCK interacts with neural CCK-A receptors to cause esophageal muscle contraction. PYY and NPY interact with Y2 receptors to inhibit this CCK-induced muscle contraction by an effect not related to NO.  相似文献   

16.
Summary The localisation and distribution of 10 vertebrate-derived neuropeptides in the earthworm, Lumbricus terrestris, have been determined by an indirect immunofluorescence technique. The peptides are pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), neuropeptide Y (NPY), glucagon (C-terminal), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), gastrinreleasing peptide (GRP), calcitonin gene-related peptide (CGRP), neurotensin (NT), and met-enkephalin. For 6 of the peptides — PYY, NPY, PHI, glucagon, GRP and CGRP — this is the first demonstration of their presence in any annelid, and NT has not previously been described in an oligochaete. Cell bodies and nerve fibres immunoreactive to the 10 peptides occur throughout the CNS. In the PNS, epidermal sensory cells displayed immunoreactivities to PP and PYY, and PP-, PYY-, NPY-, PHI- and GRP-like immunoreactivities occurred in nerve fibres supplying the main body muscles. Nerve fibres immunoreactive to PP and PYY are also associated with the innervation of the gut (pharynx, oesophageal glands, and mid and posterior regions of the intestine). No endocrine cells immunoreactive for any of the antisera tested could be identified in the gut epithelium, suggesting that dual location of peptides in the brain and gut epithelium is a phenomenon that occurred at a later stage in evolution. No immunoreactive elements were detected in any of the organs and ducts of the reproductive and excretory systems.  相似文献   

17.
Ligand binding to rodent pancreatic polypeptide-responding neuropeptide Y (NPY) receptors (here termed PP/NPY receptors), or to cloned Y4 or Y5 receptors, is selectively inhibited by amiloride, peptide or alkylating modulators of sodium transport. The PP/NPY and Y4 receptors are also selectively blocked by human or rat pancreatic polypeptide (PP) and the blocking peptides are not dissociated by high concentrations of alkali chlorides (which restore most of the binding of subtype-selective agonists to Y1 and Y2 sites). The PP/NPY receptors could also be blocked by NPY and related full-length peptides, including Y1-selective agonists (IC50 300-400 pM). The cloned Y(4) receptors from three species are much less sensitive to NPY or PYY. The sensitivity of both the PP/NPY sites and the Y(4) sites to Y2-selective peptides is quite low. The ligand attachment to PP/NPY sites is also very sensitive to peptidic Y1 antagonist ((Cys31,NVal34NPY27-36))2, which however blocks these sites at much higher molarities. Blockade of PP/NPY and Y4 sites by agonist peptides can be largely prevented by N5-substituted amiloride modulators of Na+ transport, and by RFamide NRNFLRF.NH2, but not by Ca2+ channel blockers, or by inhibitors of K+ transport. Protection of both PP/NPY and Y4 sites against blockade by human or rat pancreatic polypeptide is also afforded by short N-terminally truncated NPY-related peptides. The above results are consistent with a stringent and selective activity regulation for rabbit PP/NPY receptor(s) that may serve to differentiate agonists and constrain signaling, and could involve transporter-like interactants.  相似文献   

18.
We have recently shown that the release of alpha-MSH by the intermediate lobe of the frog pituitary is inhibited by neuropeptide Y (NPY). Using the perifusion technique, we have compared in the present study, the alpha-MSH release inhibiting activities of NPY, various NPY short chain analogues and two other members of the pancreatic polypeptide family, peptide YY (PYY) and avian pancreatic polypeptide (APP). The order of biological potency was NPY greater than NPY[2-36] greater than NPY[16-36] greater than NPY[25-36] greater than NPY[1-15]. Among the two pancreatic polypeptides tested, PYY appeared to be almost as potent as NPY while APP was 6 times less active than NPY. Neither NPY[1-15] nor NPY[16-36] could antagonize the inhibitory effect of NPY on alpha-MSH release. The structure-activity relationship study suggests that the bioactive determinant of NPY is located in the C-terminal part of the molecule.  相似文献   

19.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

20.
Neuropeptide Y (NPY), a putative co-transmitter in noradrenergic sympathetic nerves of the cardiovascular system, inhibits the negative chronotropic action of the cardiac vagus. In the present study, peptides related to NPY were tested for potency in producing this effect. In bilaterally vagotomized, anaesthetised dogs, the increase in pulse interval caused by electrical stimulation of the peripheral stump of the right vagus was measured before and after intravenous administration of peptide. The effects of doses of NPY were compared with those of equimolar doses of peptide YY (PYY), and of avian and human pancreatic polypeptides (APP and HPP). PYY inhibited the vagal action more effectively than did NPY. APP and HPP, however, caused no change in strength of vagal action at the doses used. The response to a second injection of NPY, given soon after the injection of APP or HPP, was not significantly different from the original. Thus no evidence was obtained for a competitive inhibition of the action of NPY by either pancreatic polypeptide. A C-terminal hexapeptide fragment of human pancreatic polypeptide was also tested. Like APP and HPP, it neither inhibited the cardiac vagus nor blocked the action of NPY. The order of potency obtained here (PYY greater than NPY much greater than APP, HPP, CFPP) can be expected to be of use in efforts to distinguish the active site(s) of the NPY molecule, and to characterise the receptors involved in these modulatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号