首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Transmission electron microscopy of the spermatozoa of five species from three families of bivalves has shown that each species has a sperm with unique morphology. However, the morphology of the acrosomes of each species is typical of the subclass of bivalve to which they belong. An examination of spermatogenesis in the five species, along with a re-examination of material from six other species of bivalves, has revealed that pre-spermiogenic cells possess flagella. In addition, acrosome formation begins in the spermatocytes with the formation of proacrosomal vesicles in the Golgi body. During spermiogenesis the proacrosomal vesicles coalesce at the presumptive posterior of the spermatid, with a larger vesicle produced by the Golgi body. The single acrosomal vesicle eventually migrates to the anterior of the spermatid where it assumes its mature form. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The large apical segments of guinea pig sperm acrosomes were mechanically separated from the spermatozoa and subsequently isolated by density gradient centrifugation. The isolated acrosomal caps were very stable and maintained their crescent morphology when suspended in sucrose-based medium buffered at pH 5.6, with or without the acrosin inhibitor p-aminobenzamidine (pAB). Examination under the electron microscope showed that the acrosomal caps were free of plasma membrane and were bound by an outer acrosomal membrane which was discontinuous. Enzymatic analysis after lysis of the caps indicated that acrosin and hyaluronidase were present with high specific activity, while only a trace amount of acid phosphatase activity and no arylsulphatase, phospholipase A2, or phospholipase C activities were present. Significant particulate acrosin activity, but only trace amounts of soluble acrosin activity, could be detected in the isolated acrosomal caps if assayed immediately after isolation in the absence of pAB. However, soluble acrosin activity of high specific activity was obtained after the acrosomal caps were extracted by 10% glycerol buffered at low pH (pH 3.0). The new procedures provide a means to isolate and purify guinea pig sperm apical acrosomal segments rapidly.  相似文献   

3.
Spermatogenic ultrastructure in the marine bivalve mollusc Myochama anomioides (Myochamidae) is described and contrasted with other bivalves, especially other euheterodonts. Small (0.1 μm diameter), primary proacrosomal vesicles produced in spermatocytes give rise to much larger (0.4 μm diameter) secondary proacrosomal vesicles in early spermatids, which in turn form the dished‐shaped, definitive acrosomal vesicle (diameter 1.0 μm) of later spermatids. The acrosomal vesicle acquires a deposit of subacrosomal material and comes to lie close to or in contact with the plasma membrane. The acrosomal complex (acrosomal vesicle + subacrosomal material) initially positions itself at the apex of the condensing, fibrous nucleus (the so‐called temporary acrosome position), but subsequently begins to move posteriorly. The condensing nucleus becomes markedly folded so that its apex is posteriorly orientated towards the migrating acrosomal complex and the midpiece (mitochondria and centrioles). The close spatial relationship of nuclear apex to acrosomal complex during this folding strongly suggests that acrosomal migration in M. anomioides is assisted, at least in part, by movement of the late spermatid nucleus. Similar nuclear folding has previously been demonstrated in an early stage of fertilization in another anomalodesmatan (Laternula limicola) raising the possibility that one event might be a reversal of the other.  相似文献   

4.
The spermatozoa of the musk shrew, Suncus murinus, have a fan-like giant acrosome with a diameter of approximately 20 mm. The aim of this study was to investigate how this giant acrosome is constructed in the musk shrew spermatid and, in particular, how the Golgi apparatus involved in acrosome formation behaves. The behaviour of the Golgi apparatus was monitored by confocal laser scanning microscopy with antibody against a Golgi-associated Rab6 small GTPase. In the early Golgi phase, small Golgi units, the Golgi satellites, localized as a large aggregate in the juxtanuclear cytoplasm. As acrosome formation progressed, the Golgi satellites gradually dispersed, associated with proacrosomal vesicles and an acrosomal vesicle, and finally became distributed as multiple small units over the whole surface of an acrosomal cap in the round spermatid. The mode of acrosome formation in musk shrews was distinctly different from that in rats and mice, in which the Golgi apparatus remains as a single unit throughout acrosome formation. In musk shrews, the proacrosomal vesicles formed successively by the Golgi satellites coalesced, one after another, into a potential acrosomal vesicle. This process may result in further enlargement of the acrosome. The results of the present study indicate that Golgi satellites are necessary for the biogenesis and development of the giant acrosome in musk shrew spermatozoa.  相似文献   

5.
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid‐spermatids. Unlike previous observations, a Golgi complex has been found in mid‐spermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron‐dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron‐dense vesicles are implicated in the formation of an electron‐dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two‐step process, forming the characteristic concentric three‐layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Spermatozoa of the trigonioid bivalveNeotrigonia margaritacea (Lamarck) (Trigoniidae, Trigonioida) are examined ultrastructurally. A cluster of discoidal, proacrosomal vesicles (between 9 to 15 in number) constitutes the acrosomal complex at the nuclear apex. The nucleus is short (2.4–2.6 μm long, maximum diameter 2.2 μm), blunt-conical in shape, and exhibits irregular lacunae within its contents. Five or sometimes four round mitochondria are impressed into shallow depressions in the base of the nucleus as is a discrete centriolar fossa. The mitochondria surround two orthogonally arranged centrioles to form, collectively, the midpiece region. The distal centriole, anchored by nine satellite fibres to the plasma membrane, acts as a basal body to the sperm flagellum. The presence of numerous proacrosomal vesicles instead of a single, conical acrosomal vesicle setsNeotrigonia (and the Trigonioida) apart from other bivalves, with the exception of the Unionoida which are also known to exhibit this multivesicular condition. Spermatozoa ofN. margaritacea are very similar to those of the related speciesNeotrigonia bednalli (Verco) with the exception that the proacrosomal vesicles ofN. margaritacea are noticeably larger than those ofN. bednalli.  相似文献   

7.
The distribution of ATPase activity in the heads of uncapacitated, capacitated, and acrosome-reacting guinea-pig spermatozoa was examined cytochemically using the Wachstein-Meisel's technique. In uncapacitated spermatozoa, the reaction products of the enzyme activity were localized on both the inner surface of the plasma membrane and the outer surface of the outer acrosomal membrane. The activity was Mg2+-dependent and inhibited by both Ca2+ and SH-blocking agents. This Mg2+-dependent ATPase activity was also demonstrated at the same sites in capacitated spermatozoa, whereas it was completely absent in acrosome-reacting spermatozoa. Although we did not determine the exact time of inactivation of the enzyme, it appeared to occur before the plasma membrane fused with the underlying outer acrosomal membrane. The abrupt loss of the Mg2+-dependent ATPase activity in the plasma and outer acrosomal membranes immediately before the onset of the acrosome reaction seems to suggest that inactivation of this enzyme by Ca2+ is one of the important biochemical events involved in the acrosome reaction.  相似文献   

8.
Summary

In Cerastoderma glaucum, Sertoli cells are rich in lipids, glycogen and lysosomes, and premeiotic cells exhibited nuage, a prominent Golgi complex and endoplasmic reticulum cisternae encircling the nucleus. The Golgi complex gives rise to proacrosomal vesicles during mid-spermiogenesis, and the round acrosomal vesicle, with a dense fibrillar core, migrates laterally while linked to the plasma membrane as it develops the subacrosomal material. In its final position, the vesicle becomes cap-shaped (0.6 μm) and differentiates into apical light and basal dense regions. The elongated and helicoidal nucleus (8–9.9 μm) has a thin tip (0.3 μm) that invades the subacrosomal space, and in the midpiece (0.8 μm) two of the four mitochondria extend laterally to the nucleus (1.5–2.1 μm). In Spisula subtruncata, Sertoli cells are rich in lipids, glycogen and phagocytosed sperm. Premeiotic cells exhibit nuage, a prominent Golgi complex that gives rise to proacrosomal vesicles from the leptotene stage and a flagellimi that is extruded at zygotene. The acrosomal vesicle forms during the round spermatid stage and differentiates into a large and dense basal region and an apical light region. It then migrates while linked to the plasma membrane by its apical pole. Development of the subacrosomal perforatorium is associated with nuage materials and endoplasmic reticulum vesicles. The mature cap-shaped (0.6 μm) acrosomal vesicle exhibits a large apical and irregular region with floccular contents and a basal dense region. The round nucleus becomes barrel-shaped (1.5 μm) and the midpiece (0.8 μm), with four mitochondria, contains a few glycogen particles.  相似文献   

9.
The spermatozoa of both Clavelina lepadiformis and Ciona intestinalis have architectural features characteristic of ascidian spermatozoa that have been previously described. They have an elongated head (6 microm and 3 microm long, respectively) and a single mitochondrion that is closely applied laterally to the nucleus; they lack a midpiece. The acrosome of Clavelina lepadiformis spermatozoa is a moderately electron-dense, pear-shaped flattened vesicle, approx. 300 nm x 200 nm x 40 nm in length, width, and height, respectively. The acrosome of Ciona intestinalis spermatozoa is a moderately electron-dense, round flattened vesicle with an electron-dense plate in its central region. It is approx. 200 nm x 200 nm x 50 nm in length, width, and height, respectively. During spermiogenesis in both ascidians, several proacrosomal vesicles (50-70 nm in diameter) appear in a blister at the future apex of the spermatids. These vesicles appear to be associated with the inner surface of the plasma membrane enclosing the blister. They come into contact with each other along the inner surface of the plasma membrane and fuse to form a horseshoe-shaped acrosomal vesicle, which becomes a round, flattened vesicle during further differentiation. Some speculations about the mechanism of acrosome differentiation, the possible role of the acrosome during fertilization, and in the speciation of ascidians are presented.  相似文献   

10.
锯缘青蟹精子发生的超微结构   总被引:13,自引:0,他引:13  
王艺磊  张子平 《动物学报》1997,43(3):249-254
采用透射电镜观察锯缘青蟹精子发生过程中超微结构的变化,结果表明:精原细胞椭圆形,染色质分布于核膜周围,胞质中具嵴少的线粒体,内质网小泡等。初级精母细胞染色质呈非浓缩状,胞质中具众 内质网小泡,特殊的膜系及晶格状结构。次级精母细胞核质间出现由内质小泡聚集成的腔。  相似文献   

11.
Spermiogenesis in the Marine Shrimp, Sicyonia ingentis   总被引:2,自引:0,他引:2  
Spermiogenesis in the marine prawn Sicyonia ingentis was examined using transmission electron microscopy. The acrosomal vesicle, derived from the fusion of pro-acrosomal vesicles blebbed from the nuclear envelope, contains the membrane pouches, anterior granule and a spike. The anterior granule is formed from the coalescence of granular aggregates within the proacrosomal vesicles. Primordia underlying the apical acrosomal vesicle membrane polymerize to form a spike approximately 6 μm long. The convoluted pouch membranes arise from the posterior acrosomal vesicle membrane. Lateral and apical portions of the acrosomal vesicle are surrounded by a pentalaminar membrane comprised of the spermatid plasma membrane and the acrosomal vesicle membrane. Subacrosomal structures include the dense saucer plate, granular core and crystalline lattice. These components condense just posterior to the acrosomal vesicle and are separated from the chromatin by a nuclear plate.
The spermatid nucleus becomes surrounded by rough endoplasmic reticulum (RER) and membranous lamellar bodies. RER gives rise to smooth endoplasmic reticulum. These membrane systems degenerate, forming a band of reticular elements around the lateral and posterior portions of the nucleus. The nucleus undergoes condensation followed by decondensation with concomitant breakdown of the nuclear envelope. The resultant chromatin is fibrillar in appearance.  相似文献   

12.
The acrosomal status of wallaby spermatozoa was evaluated by light and electron microscopy after incubation in 1–100 μM lysophosphatidylcholine (LPC) for up to 120 min. Treatment with 1 and 10 μM LPC for 120 min did not lead to acrosomal loss, or detectable alteration to the acrosome, as detected by Bryan's staining and light microscopy. Incubation with 25 μM LPC had little effect on acrosomal loss, however statistically significant changes (P < 0.05) in the acrosomal matrix (altered) were detected after 10-min incubation by light microscopy. Around 50% of acrosomes were altered after 20-min incubation in 50 μM LPC (P < 0.001), and 40% of spermatozoa had lost their acrosome after 60-min incubation (P < 0.001). Treatment with 75 and 100 μM LPC led to rapid acrosomal loss from around 50% of spermatozoa within 10 min (P < 0.001), and by 60 min acrosomal loss was 70–80%. LPC, like the diacylglycerol DiC8 (1,2-di-octanoyl-sn-glycerol), is thus an effective agent to induce loss of the relatively stable wallaby sperm acrosome, and it also induces changes within the acrosomal matrix. Ultrastructure of the LPC-treated spermatozoa revealed that the plasma membrane and the acrosomal membranes were disrupted in a manner similar to that seen after detergent treatment (Triton X-100). There was no evidence of point fusion between the plasma membrane overlying the acrosome and the outer acrosomal membrane. The plasma membrane was the first structure to disappear from the spermatozoa. The acrosomal membranes and matrix showed increasing disruption with time and LPC concentration. Wallaby spermatozoa incubated with LPC at concentrations that induced significant acrosomal loss also underwent a rapid decline in motility that suggested that acrosomal loss may be due to cell damage, rather than a physiological AR. This study concluded that LPC-induced acrosomal loss from tammar wallaby spermatozoa is due to its action as a natural detergent and not as a phosphoinositide pathway intermediate. The study further demonstrates the unusual stability of the marsupial acrosomal membranes. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Spermiogenesis, in particular the head differentiation of Diplometopon zarudnyi, was studied at the ultrastructural level by Transmission Electron Microscope (TEM). The process includes acrosomal vesicle development, nuclear elongation, chromatin condensation and exclusion of excess cytoplasm. In stage I, the proacrosomal vesicle occurs next to a shallow fossa of the nucleus, and a dense acrosomal granule forms beneath it. This step commences with an acrosome vesicle forming from Golgi transport vesicles; simultaneously, the nucleus begins to move eccentrically. In stage II, the round proacrosomal vesicle is flattened by projection of the nuclear fossa, and the dense acrosomal granule diffuses into the vesicle as the fibrous layer forms the subacrosomal cone. Circular manchettes surrounded by mitochondria develop around the nucleus, and the chromatin coagulates into small granules. The movement of the nucleus causes rearrangement of the cytoplasm. The nucleus has uniform diffuse chromatin with small indices of heterochromatin. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. In stage III, the front of the elongating nucleus protrudes out of the spermatid and is covered by the flat acrosome; coarse granules replace the small ones within the nucleus. One endonuclear canal is present where the perforatorium resides. In stage IV, the chromatin concentrates to dense homogeneous phase. The circular manchette is reorganized longitudinally. The Sertoli process covers the acrosome and the residues of the cytoplasmic lobes are removed. In stage V, the sperm head matures.  相似文献   

14.
Summary

The process of spermiogenesis and the ultrastructure of the spermatozoa in the peanut worm, Themiste pyroides, from the Sea of Japan were observed with electron microscopy (SEM and TEM). The testes are composed of groups of spermatogonia and are covered by peritoneal cells. Clusters of spermatocytes are released from the testes into the coelomic fluid. Connected by intercellular bridges, the spermatocytes within a given cluster develop asynchronously. Proacrosomal vesicles and a flagellum appear in spermatocytes. Spermatids in the clusters retain the intercellular connections. During spermiogenesis, the acrosomal vesicle, formed by coalescence of small proacrosomal vesicles in the basal part of the spermatid, migrates to the apical part of the cell to form a conical-shaped acrosome. The basal concavity lying above the nucleus is filled with subacrosomal substance. The midpiece contains four mitochondria, two centrioles, and some residual cytoplasm with dark glycogen-like granules. A peculiar annulus structure develops around the base of the flagellum. The distal centriole has a pericentriolar complex consisting of radially oriented elements. Before the spawning process, the spermatozoa are filtered throughout the ciliary nephrostomal funnel into the excretory sac of paired nephridia where they are stored for a short time. The sperm are released into the sea water via nephridiopores. Spermatozoa remaining in the coelomic fluid after spawning are resorbed by amoebocytes. This species from Vostok Bay is characterized by a prolonged spawning period from June to early October. The reproductive strategy of T. pyroides is discussed in comparison with that of Thysanocardia nigra, the latter having a unique pattern of packaging of the spermatozoa, resulting in the formation of spermatozeugmata, as a reproductive adaptation to the very short spawning period.  相似文献   

15.
A monoclonal antibody generated against hamster epididymal spermatozoa and recognizing an antigen within the acrosome was used in conjunction with FITC-antimouse immunoglobulin as a marker of the human acrosome during sperm development, capacitation, and the acrosome reaction. The specificity of binding of the monoclonal antibody was assessed using immunolocalization by epi-fluorescence and electron microscopy. Immunofluorescence revealed that antibody bound over the entire anterior acrosome in hamster and human spermatozoa. Ultrastructural localization indicated that antigen was predominantly present on the inner face of the outer acrosomal membrane and within the acrosomal content. Qualitative specificity was studied using a highly purified preparation of hamster acrosomes in an enzyme-linked immunosorbent assay. Since the antibody rapidly visualized human acrosomes, it was used to detect abnormal acrosome morphology of mature spermatozoa and to mark spermatids present in the ejaculate. During incubation in capacitating medium, changes in the immunofluorescence of live or methanol fixed spermatozoa were correlated with incubation interval and the ability of spermatozoa to fuse with zona-free hamster oocytes. Spermatozoa bound to zona-free hamster oocytes displayed no fluorescence, confirming that acrosome loss occurred before spermatozoa attached to the vitellus.  相似文献   

16.
The ultrastructural features of spermatogenesis were investigated in the hermaphroditic sea star Asterina minor. The primordial germ cells in the genital rachis contain small clusters of electron-dense material (nuage material) and a stack of annulate lamellae. They also have a flagellum and basal body complex situated close to the Golgi complex. After the development of the genital rachis into the ovotestis, spermatogenic cells increase in number and differentiation begins. Nuage material is observed in spermatogonia, but it gradually disappears in spermatocytes. The annulate lamellae do not exist beyond the early spermatogonial stage. By contrast, a flagellum and basal body complex are found throughout spermatogenesis. The Golgi-derived proacrosomal vesicles appear in the spermatocyte and coalesce to form an acrosomal vesicle in the early spermatid. The process of acrosome formation is as follows: (1) a lamella of endoplasmic reticulum (ER) continuous with the outer nuclear membrane encloses the posterior portion of the acrosomal vesicle; (2) the vesicle attaches to the cell membrane with its anterior portion; (3) periacrosomal material accumulates in the space between the acrosomal vesicle and the ER; (4) the nucleus proper changes its features to surround the acrosome; (5) amorphous, electron-dense material is deposited under the electron-dense disk; and (6) the nucleus forms a hollow opposite the electron-dense material.  相似文献   

17.
The formation of an acrosomal process at acrosomal exocytosis in spermatozoa of the amphioxus was described in the present report for the first time. A non-reacted acrosome was located in front of the nucleus, where a cup-shaped acrosomal vesicle covered a conical accumulation of subacrosomal material. When naturally spawned spermatozoa were treated with a calcium ionophore, ionomycin, the acrosomal vesicle opened at the apex and an acrosomal process was projected. The process exhibited a filamentous structure. The reaction followed the mode typically seen in marine invertebrates. These observations suggest that the features and function of the acrosome of amphioxus, whose position is on the border between invertebrates and vertebrates, reflect their ecological adaptation and phylogenic position.  相似文献   

18.
ATPase activity was cytochemically detected in the peripheral acrosomal component of ionophore-reacted sperm, while alkaline phosphatase activity was demonstrated in the upper and central components of the acrosome and, at fertilization, at the site of sperm-oocyte binding. Supernatants of ionophore treated sperm suspensions were assayed for ATPase, alkaline and acid phosphatase activities. Results suggest that alkaline phosphatase may be involved both in the acrosomal reaction and oocyte jelly lysis but the function of the acrosomal ATPase remains unknown.  相似文献   

19.
We describe a protocol to isolate a highly enriched fraction of outer acrosomal membrane from guinea pig spermatozoa and present new data on the ultrastructure of this membrane domain. Cauda epididymal spermatozoa were suspended into a low ionic strength buffer and subjected to brief homogenization; this stripped the plasma membrane from the spermatozoa and severed the acrosomal apical segment from the spermatozoon. The crescent-shaped apical segments retained the outer acrosomal membrane and specific components of the acrosomal matrix. Enriched fractions of apical segments were isolated on discontinuous sucrose gradients and the outer acrosomal membrane purified by subsequent centrifugation onto Percoll density gradients. The isolated outer acrosomal membrane did not form vesicles, but instead rolled up into spiral sheets. Both thin section and negatively stained specimens revealed a paracrystalline arrangement of filaments associated with the luminal surface of the membrane. The isolated outer acrosomal membrane revealed a limited number of polypeptides by SDS-PAGE, and the polypeptide pattern was distinct from the plasma membrane fraction. The isolated acrosomal membranes possessed no oubain sensitive Na+, K+-ATPase activity, whereas about 20% of the ATPase activity of the plasma membrane enriched fraction was inhibited by oubain. The potential function of the structural differentiations of the outer acrosomal membrane in the membrane fusion events of the acrosome reaction is discussed.  相似文献   

20.
The acrosomal complex of ostrich sperm consists of a small, cone-shaped acrosome and a slender, cylindrical perforatorium housed within a deep endonuclear canal. The perforatorium is almost exclusively endonuclear in location and is only covered by the acrosome at its point of origin in the apical subacrosomal space. The development of the acrosome is generally similar to that described in other non-passerine birds. Small proacrosomal granules (vesicles) emanating from the Golgi apparatus coalesce to form a large, membrane-bound acrosomal vesicle filled with homogeneous, electron-dense material. The acrosomal vesicle attaches to the nucleus via a shallow depression and subsequently collapses to form the typical cap-like acrosome of non-passerine birds. In ostrich spermatids the endonuclear canal becomes obvious when the collapsed acrosomal vesicle has assumed a dumbbell-shaped appearance. The perforatorium, which originates from moderately electron-dense material contained within the apical subacrosomal space, expands within the deepening endonuclear canal. The material of the perforatorium does not originate in the form of an obvious granule as in chicken and budgerigar spermatids. Indications are that in ostrich spermatids the developing acrosome plays a role in the shaping of the tip of the nucleus. The perforatorium, however, appears to represent a residual structure that has no specifically identified function. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号