首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first 24 h of post-embryonic development, the motor rhythm underlying swimming in Xenopus laevis tadpoles changes from brief (ca. 7 ms) ventral root discharge in each cycle to bursts of activity lasting around 20 ms (Sillar et al. 1991). Because individual motoneurons in the spinal cord of newly hatched embryos normally fire only a single impulse per cycle, two possible changes underly the transition to motor bursts seen in larval ventral roots; desynchronization of neurons in a given ventral root which continue to fire once per cycle, or the developmental acquisition of a multiple spike capability in individual motoneurons. Here we have recorded intracellularly from ventrally positioned spinal neurons, presumed to be myotomal motoneurons, in stage 37/38 embryos and 24 h later in development in stage 42 larvae. We find that (i) larval neurons are able to fire more than one impulse per cycle of fictive swimming activity; (ii) unlike in the embryo, they generally will fire multiple impulses in response to injected depolarizing current; (iii) the synaptic drive to motoneurons during swimming increases dramatically in complexity, although it still consists of alternating phases of synaptic excitation and chloride-dependent inhibition, superimposed upon tonic synaptic depolarization. The results therefore suggest a developmental change in the membrane properties of rhythmically active neurons as a major factor in the post-embryonic development of swimming in Xenopus larvae. This change appears to occur in premotor rhythm generating interneurons as well as in the motoneurons themselves and may satisfy a demand for behavioural flexibility that allows larvae to survive in a complex and changing environment.  相似文献   

2.
The post-embryonic development of 'fictive' swimming in immobilized Xenopus laevis tadpoles has been examined during the first day of larval life. In Xenopus embryos (stage 37-38; Nieuwkoop & Faber 1956), the rhythmic ventral root activity underlying swimming occurs as single brief (ca. 7 ms) compound impulses on each cycle. However, by stage 42 (about 24 h after hatching), ventral root discharge consists of bursts lasting around 20 ms per cycle. In addition to increased burst duration in each cycle of larval swimming, the range of cycle periods within an episode increases, although mean period values (ca. 70-80 ms) remain similar to those of the younger animal. Consequently, motoneurons at developmental stage 42 are active during swimming for a greater percentage (ca. 25%) of cycle time than at stage 37-38 (ca. 10%). Developmental stage 40 (ca. 12 h post-hatching) is an intermediate stage in rhythm development. Ventral root discharge varies from bursts of 10-20 ms at the start of an episode to embryonic (ca. 7 ms) spikes at the end of an episode. Furthermore, discharge varies from bursts of activity in rostral segments of stage 40 larvae to 7 ms spikes more caudally, as in embryos. The data thus suggest that Xenopus swimming rhythmicity develops relatively rapidly, along a rostrocaudal gradient, and may involve acquisition of multiple spiking in spinal neurons.  相似文献   

3.
1. Fictive swimming is an experimental model to study early motor development. As vestibular activity also affects the development of spinal motor projections, the present study focused on the question whether in Xenopus laevis tadpoles, the rhythmic activity of spinal ventral roots (VR) during fictive swimming revealed age-dependent modifications after hypergravity exposure. In addition, developmental characteristics for various features of fictive swimming between stages 37/38 and 47 were determined. Parameters of interest were duration of fictive swimming episodes, burst duration, burst frequency (i.e., cycle length), and rostrocaudal delay. 2. Ventral root recordings were performed between developmental stage 37/38, which is directly after hatching and stage 47 when the hind limb buds appear. The location of recording electrodes extended from myotome 4 to 17. 3. Hypergravity exposure by 3 g-centrifugation lasted 9 to 11 days. It started when embryos had just terminated gastrulation (stage 11/19-group), when first rhythmical activity in the ventral roots appeared (stage 24/27-group), and immediately after hatching (stage 37/41-group). Ventral root recordings were taken for 8 days after termination of 3 g-exposure. 4. Between stage 37/38 (hatching) and stage 47 (hind limb bud stage) burst duration, cycle length and rostrocaudal delay recorded between the 10th and 14th postotic myotome increased while episode duration decreased significantly. In tadpoles between stage 37 and 43, the rostrocaudal delay in the proximal tail part was as long as in older tadpoles while in caudal tail parts, it was shorter. During this period of development, there was also an age-dependent progression of burst extension in the proximal tail area that could not be observed between the 10th and 14th myotome. 6. After termination of the 3 g-exposure, the mean burst duration of VR activity increased significantly (p < 0.01) when 3 g-exposure started shortly after gastrulation but not when it started thereafter. Other parameters for VR activity such as cycle length, rostrocaudal delay and episode duration were not affected by this level of hypergravity. 7. It is postulated that (i) functional separation of subunits responsible for intersegmental motor coordination starts shortly after hatching of young tadpoles; and that (ii) gravity exerts a trophic influence on the development of the vestibulospinal system during different periods of embryonic development leading to the formation of more rigid neuronal networks earlier in the spinal than in the ocular projections.  相似文献   

4.
1. Repeating bursts of motor neurone impulses have been recorded from the nerves of completely isolated nerve cords of the medicinal leech. The salient features of this burst rhythm are similar to those obtained in the semi-intact preparation during swimming. Hence the basic swimming rhythm is generated by a central oscillator. 2. Quantitative comparisons between the impulse patterns obtained from the isolated nerve cord and those obtained from a semi-intact preparation show that the variation in both dorsal to ventral motor neurone phasing and burst duration with swim cycle period differ in these two preparations. 3. The increase of intersegmental delay with period, which is a prominent feature of swimming behaviour of the intact animal, is not seen in either the semi-intact or isolated cord preparations. 4. In the semi-intact preparation, stretching the body wall or depolarizing an inhibitory motor neurone changes the burst duration of excitatory motor neurones in the same segment. In the isolated nerve cord, these manipulations also change the period of the swim cycle in the entire cord. 5. These comparisons suggest that sensory input stabilizes the centrally generated swimming rhythm, determines the phasing of the bursts of impulses from dorsal and ventral motor neurones, and matches the intersegmental delay to the cycle period so as to maintain a constant body shape at all rates of swimming.  相似文献   

5.
In tadpoles, it is possible to observe the rhythmical, burstlike activity of spinal motoneurons by extracellular recordings from the ventral roots. We examined the effects of hypergravity on tadpole locomotion by using a model of fictive swimming in paralysed larvae of Xenopus laevis. Hypergravity (3g) treatment lasted 10 or 11 days. After the 3g-exposure, the mean burst duration of the 3g-animals was significantly (p < or = 0.01) increased compared to the 1g-controls. Readaptation was observed for 8 days after the end of the 3g-period. Burst duration also increases with the age of the tadpoles. Therefore, we postulate that hypergravity has a reversible effect on motor development, probably caused by a neurotrophic effect of a tonic base activity of the vestibular nuclei.  相似文献   

6.
We have compared intrinsic firing properties of motoneurons with the way they fire during locomotion in young tadpoles of four species of amphibian. Xenopus motoneurons have the highest current threshold for spiking; most fire a single spike to depolarising current steps; all fire reliably once per cycle during fictive swimming. Xenopus motoneurons recorded with Cs+-filled microlelectrodes fire repetitively to current but still fire only once per swimming cycle. Rana, Bufo and Triturus motoneurons have lower current thresholds; most fire bursts of spikes to suprathreshold current but most do not fire reliably during swimming and most still fire only once (if at all) per cycle. We conclude that neuronal firing patterns during locomotion cannot reliably be predicted from intrinsic firing properties, and suggest the composition and form of the underlying synaptic input is more important. We also measured cycle period, ventral root burst duration, and longitudinal delay during fictive swimming. These basic swimming parameters range from relatively long in Rana to relatively short in Xenopus. By discounting differences in neuronal firing properties between the four species, we can start to relate differences in fictive swimming to differences in synaptic drive, particularly the strong electrotonic input seen only in Xenopus. Accepted: 27 January 1997  相似文献   

7.
During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development of vestibuloocular and vestibulospinal projections (i) microgravity retards the development of VR activity while hypergravity weakly accelerates it; (ii) that microgravity retards the rVOR development while hypergravity caused a sensitization, and that (iii) AG-induced changes of VR activity during fictive swimming have a vestibular origin.  相似文献   

8.
The life cycle of the lamprey includes a larval stage that can last for several years. The motor behavior of the larval lamprey, the ammocoete, has been only minimally studied and little is known of the neural correlates of that behavior. Comparison of known larval behavior to that of adults leaves unclear whether there are large or small changes in the spinal nervous system during transformation. The motor output of isolated larval and transforming spinal cords when stimulated to "swim" with D-glutamate has some differences from that of comparable adult preparations, but shares many important features with adults. Primarily, the fictive swimming is less well regulated and less stable than adults of the same species. We propose that a major difference in the structure and organization of the central pattern generator for locomotion between adults and ammocoetes is a relative lack or immaturity of some cell types that participate in the coordination of the segments and the generation of the rhythm of the periodic bursting.  相似文献   

9.
Summary During fictive swimming in the isolated spinal cord of the lamprey (Ichthyomyzon unicuspis andPetromyzon marinus) the membrane potentials of motoneurons (MNs), lateral interneurons (L INs), and CC interneurons (CC INs) oscillate between a depolarised and a relatively hyperpolarised phase. After intracellular Cl injections (usually combined with a DC hyperpolarisation) IPSP's became depolarising, and in cells which were phasically inhibited, phases of relative hyperpolarisation became phases of relative depolarisation. The peak depolarisation and/or spike burst mid point in MNs after Cl injection occurred at a phase of 0.65 ± 0.12 (mean ±S.D.) in the cycle, with zero being the start of the ipsilateral ventral root burst. In CC INs the peak depolarisation and/or spike burst mid point after Cl occurred significantly earlier, at a phase of 0.40 ± 0.18. L INs were also phasically inhibited with peak depolarisation and/or spike burst mid point after Cl injection at an intermediate phase of 0.52 ± 0.21. It is concluded that the central pattern generator for fictive swimming has at least three synaptic outputs: an early excitation, and inhibition at a range of phases, which could be combinations of an early and a late inhibition.Abbreviations CC IN interneuron with contralateral caudal axon - MN motoneuron - L IN lateral interneuron - VR ventral root  相似文献   

10.
Intracellular microelectrode recordings have been made from probable motoneurons in the spinal cord of Xenopus laevis embryos during fictive 'swimming' in preparations paralysed with the neuromuscular blocking agent tubocurarine. These cells had resting potentials of -50 mV or more. During spontaneous or stimulus-evoked 'swimming' episodes: (a) the cells were tonically excited; the level of tonic synaptic excitation and the conductance increase underlying it were both inversely related to the 'swimming' cycle period; (b) the cells usually fired one spike per cycle in phase with the motor root burst on the same side; spikes did not overshoot zero and were evoked by phasic excitatory synaptic input on each cycle, superimposed on the tonic excitation; (c) in phase with motor root discharge on the opposite side of the body, the cells were hyperpolarized by a chloride-dependent inhibitory postsynaptic potential. The nature of synaptic potentials during 'swimming' was evaluated by means of intracellular current injections. The 'swimming' activity could be controlled by natural stimuli. The results provide clear evidence on the relation of tonic excitation to rhythmic locomotory pattern generation, and indirect evidence for reciprocal inhibitory coupling between antagonistic motor systems.  相似文献   

11.
  1. In the mollusc Tritonia escape swimming is produced by a network of central pattern generator (CPG) neurons. The purpose of this study was to determine which neurotransmitters might be involved in the swim system.
  2. Injection of serotonin (5HT) into whole animals elicited swimming followed by a long-lasting inhibition of swimming. In isolated brain preparations, bath-applied 5HT elicited a swim pattern at short latency and also caused a long-lasting inhibition of the swim pattern. The activation of swimming by 5HT was associated with a tonic depolarization of cerebral cell 2 (C2) and the dorsal swim interneurons (DSI) which form part of the swim CPG network.
  3. In isolated brain preparations, bath applied glycine, histamine, proctolin, and FMFRamide had no effect on the swim motor pattern elicited by electrical stimulation of a peripheral nerve. Aspartate, carbacol, dopamine, glutamate, octopamine, pilocarpine, and small cardioactive peptide-B (SCPB) inhibited the activation of swimming by nerve stimulation.
  4. The 5HT antagonists cyproheptidine, tryptamine, and 7-methyltryptamine had no effect on swimming, but methysergide and fenfluramine inhibited swimming to both normal sensory stimuli and exogenously applied 5HT.
  5. Staining with a polyclonal antibody indicated that one class of CPG neurons, the dorsal swim interneurons (DSI), was immunoreactive for 5HT.
  6. Taken together, the data suggest that pattern generator interneurons, particularly the DSIs, use 5HT as a neurotransmitter.
  相似文献   

12.
Neural mechanisms underlying selection of motor responses are largely unknown in vertebrates. This study shows that in immobilized Xenopus embryos, brief mechanical or electrical stimulation of the trunk skin can trigger sustained fictive swimming, whereas sustained pressure or repetitive electrical stimulation can evoke fictive struggling. These two rhythmic motor patterns are distinct: alternating single motor root spikes propagate from head to tail during swimming; alternating motor root bursts propagate from tail to head during struggling. As both motor patterns can be evoked in embryos with the CNS transected caudal to the cranial roots, the sensory pathway responsible must have direct access to the spinal cord. Rohon-Beard sensory neurons provide the only such pathway known. They respond appropriately to brief stimuli applied to the trunk skin, and also to repetitive electrical stimuli and sustained pressure. The results suggest that Rohon-Beard sensory neurons can both trigger sustained swimming and 'gate in' struggling motor patterns, and thus effect behavioural selection according to their pattern of activity.  相似文献   

13.
 Straight locomotion in the lamprey is, at the segmental level, characterized by alternating bursts of motor activity with equal duration and spike frequency on the left and the right sides of the body. Lateral turns are characterized by three main changes in this pattern: (1) in the turn cycle, the spike frequency, burst duration, and burst proportion (burst duration/cycle duration) increase on the turning side; (2) the cycle duration increases in both the turn cycle and the succeeding cycle; and (3) in the cycle succeeding the turn cycle, the burst duration increases on the non-turning side (rebound). We investigated mechanisms for the generation of turns in single-segment models of the lamprey locomotor spinal network. Activation of crossing inhibitory neurons proved a sufficient mechanism to explain all three changes in the locomotor rhythm during a fictive turn. Increased activation of these cells inhibits the activity of the opposite side during the prolonged burst of the turn cycle, and slows down the locomotor rhythm. Secondly, this activation of the crossing inhibitory neurons is accompanied by an increased calcium influx into the cells. This gives a suppressed activity on the turning side and a contralateral rebound after the turn, through activation of calcium-dependent potassium channels. Received: 28 June 2000 / Accepted for publication: 10 May 2001  相似文献   

14.
We have investigated the pharmacology underlying locomotor system responses to serotonin (5-HT) in embryos of the frog, Rana temporaria, to provide a comparison to studies in embryos of its close relative, Xenopus laevis. Our findings suggest that two divergent mechanisms underlie the modulation of locomotion by 5-HT in Rana. Bath-applied 5-HT or 5-carboxamidotyptamine, a 5-HT1,5A,7 receptor agonist, can modulate fictive swimming in a dose-dependent manner, increasing burst durations and cycle periods. However, activation of 5-HT1,7 receptors with R8-OHDPAT or 8-OHDPAT fails to mimic 5-HT, and in some cases exerts exactly the opposite response; decreasing burst durations and cycle periods. Elevating endogenous 5-HT levels by blocking re-uptake with clomipramine transiently increases burst durations. The receptors involved in this endogenous response include 5-HT1A receptors, as in Xenopus, but also 5-HT7 receptors. However, like the 8-OHDPAT enantiomers, prolonged re-uptake inhibition can result in a motor response in the opposite direction to exogenous 5-HT. This effect is not reversed by 5-HT1A and/or 5-HT7 receptor antagonism, implicating 5-HT1B/1D receptors. Remarkably, antagonism of these receptors using methiothepin unmasks a dose-dependent response to clomipramine, reminiscent of exogenous 5-HT. Our data suggest that 5-HT1A,7 and 5-HT1B/1D receptors act as gain-setters of burst durations, whilst 5-HT5A receptors are involved in the effects of bath-applied 5-HT on locomotion.  相似文献   

15.
Developing neural networks follow common trends such as expression of spontaneous, recurring activity patterns, and appearance of neuromodulation. How these processes integrate to yield mature, behaviorally relevant activity patterns is largely unknown. We examined the integration of serotonergic neuromodulation and its role in the functional organization of the accessible locomotor network in developing zebrafish at behavioral and cellular levels. Locally restricted populations of serotonergic neurons and their projections appeared in the hindbrain and spinal cord of larvae after hatching (approximately day 2). However, 5-HT affected the swimming pattern only from day 4 on, when sustained spontaneous swimming appeared. 5-HT and its agonist quipazine increased motor output by reducing intervals of inactivity, observed behaviorally (by high-speed video) and in recordings from spinal neurons during fictive swimming (by whole-cell current clamp). 5-HT and quipazine had little effect on the properties of the activity periods, such as the duration of swim episodes and swim frequency. Further, neuronal input resistance, rheobasic current, and resting potential were not affected significantly. The 5-HT antagonists methysergide and ketanserin decreased motor output by prolonging the periods of inactivity with little effect on the active swim episode or neuronal properties. Our results suggest that 5-HT neuromodulation is integrated early in development of the locomotor network to increase its output by reducing periods of inactivity with little effect on the activity periods, which in contrast are the main targets of 5-HT neuromodulation in neonatal and adult preparations.  相似文献   

16.
The nudibranch Melibe leonina swims by rhythmically bending from side to side at a frequency of 1 cycle every 2-4 s. The objective of this study was to locate putative swim motoneurons (pSMNs) that drive these lateral flexions and determine if swimming in this species is produced by a swim central pattern generator (sCPG). In the first set of experiments, intracellular recordings were obtained from pSMNs in semi-intact, swimming animals. About 10-14 pSMNs were identified on the dorsal surface of each pedal ganglion and 4-7 on the ventral side. In general, the pSMNs in a given pedal ganglion fired synchronously and caused the animal to flex in that direction, whereas the pSMNs in the opposite pedal ganglion fired in anti-phase. When swimming stopped, so did rhythmic pSMN bursting; when swimming commenced, pSMNs resumed bursting. In the second series of experiments, intracellular recordings were obtained from pSMNs in isolated brains that spontaneously expressed the swim motor program. The pattern of activity recorded from pSMNs in isolated brains was very similar to the bursting pattern obtained from the same pSMNs in semi-intact animals, indicating that the sCPG can produce the swim rhythm in the absence of sensory feedback. Exposing the brain to light or cutting the pedal-pedal connectives inhibited fictive swimming in the isolated brain. The pSMNs do not appear to participate in the sCPG. Rather, they received rhythmic excitatory and inhibitory synaptic input from interneurons that probably comprise the sCPG circuit.  相似文献   

17.
The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain.  相似文献   

18.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

19.
Summary A quantitative EMG analysis is presented of the effects of deafferentation on the motor program for oviposition digging in the locust Locusta migratoria. We examined the activity of two groups of antagonistic muscles, the opener and closer muscles of the ventral ovipositor valves, in terms of the cycle frequency, burst duration, and relative burst onset times. There were no significant differences between the pattern frequency produced in intact, semi-intact, or deafferented animals within 10 min of the onset of the pattern. Over time, however, the pattern in deafferented animals showed a significant decrease in frequency, which it did not do in intact or semi-intact animals. Seven out of 10 deafferented preparations ceased producing the digging rhythm within 35 min of onset, but none of the semi-intact preparations did so. Mechanosensory hairs cover the ovipositor valves, and are in a position to supply sensory input to the digging pattern generator during the natural behaviour. When nerves carrying sensory axons from these hairs were electrically-stimulated tonically, the motor pattern was restored in deafferented animals. The effects of the stimulation outlasted the stimulation itself for several minutes, and could be repeated several times. We suggest that tonic input is necessary for the maintenance of the digging rhythm, possibly by maintaining levels of some modulatory substance(s) within the CNS.Abbreviations CPG central pattern generator - DUM dorsal unpaired median neuron - EMG electromyogram - LC left ovipositor ventral closer muscle - LCDUR duration of activity of LC - LCFREQ frequency of activity bursts in LC - LCONSET onset of activity in LC relative to LO - LO left ovipositor ventral opener muscle - LODUR duration of activity of LO - LOFREQ frequency of activity bursts of LO - RO right ovipositor ventral opener muscle - RODUR duration of activity in RO - ROFREQ frequency of activityb bursts of RO  相似文献   

20.
Using microinjection techniques, we have explored the isolated, complete midline sectioned brainstem of the frog (Rana catesbeiana) to identify regions that influence the endogenous respiratory-related motor activity. Ten-nanoliter injections of lidocaine (1%), GABA (100 mM) and glutamate (10 and 100 mM) into discrete regions of the rostral and the caudal brainstem produced different effects on the phasic neural discharge. In the rostral site lidocaine, GABA and glutamate injections altered neural burst frequency with little or no effect on burst amplitude. In the caudal site, responses to lidocaine and GABA injections consisted primarily of decreases in neural burst amplitude, often, but not always associated with minor decreases in burst frequency. In this same region, the response to glutamate was characterized by a temporary interruption of the rhythmic neural burst activity. The largest responses to substance injection in both regions were obtained at sites ranging between 200 and 500 m from the ventral surface, in the ventral medullary reticular formation. The results reveal the existence of two areas in the frog brainstem that influence respiratory motor output, one related to the respiratory burst frequency and the other related to the amplitude of the motor output.Abbreviations V trigeminal nerve - VI abducens nerve - VII facial nerve - VIII auditory nerve - X vagal nerve - H hypoglossal nerve - VRG ventral respiratory group - NTS nucleus of the solitary tract  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号