首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) has been demonstrated to be regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) and inhibited by intracellular reactive oxygen species (ROS). Herein, P-gp and HIF-1alpha expression were investigated in multicellular prostate tumor spheroids overexpressing the ROS-generating enzyme Nox-1 in comparison to the mother cell line DU-145. In Nox-1-overexpressing tumor spheroids (DU-145Nox1) generation of ROS as well as expression of Nox-1 was significantly increased as compared to DU-145 tumor spheroids. ROS generation was significantly inhibited in the presence of the NADPH-oxidase antagonists diphenylen-iodonium chloride (DPI) and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). Albeit growth kinetic of DU-145Nox1 tumor spheroids was decreased as compared to DU-145 spheroids, elevated expression of Ki-67 was observed indicating increased cell cycle activity. In DU-145Nox1 tumor spheroids, expression of HIF-1alpha as well as P-gp was significantly decreased as compared to DU-145 spheroids, which resulted in an increased retention of the anticancer agent doxorubicin. Pretreatment with the free radical scavengers vitamin E and vitamin C increased the expression of P-gp as well as HIF-1alpha in Nox-1-overexpressing cells, whereas no effect of free radical scavengers was observed on mdr-1 mRNA expression. In summary, the data of the present study demonstrate that the development of P-gp-mediated MDR is abolished under conditions of elevated ROS levels, suggesting that the MDR phenotype can be circumvented by modest increase of intracellular ROS generation.  相似文献   

3.
ABC transporters like P‐glycoprotein (P‐gp/ABCB1) are membrane proteins responsible for the transport of toxic compounds out of non‐malignant cells and tumor tissue. Aim: To investigate the effect of glycolysis and the tissue redox state on P‐gp expression in multicellular tumor spheroids derived from prostate adenocarcinoma cells (DU‐145), glioma cells (Gli36), and the human cervix carcinoma cell line KB‐3‐1 transfected with a P‐gp–EGFP fusion gene that allows monitoring of P‐gp expression in living cells. During cell culture of DU‐145, Gli36, and KB‐3‐1 tumor spheroids P‐gp expression was observed as well as increased lactate and decreased pyruvate levels and expression of glycolytic enzymes. Inhibition of glycolysis for 24 h by either iodoacetate (IA) or 2‐deoxy‐D ‐glucose (2‐DDG) downregulated P‐gp expression which was reversed upon coincubation with the radical scavenger ebselen as shown by semi‐quantitative immunohistochemisty in DU‐145 and Gli36 tumor spheroids, and by EGFP fluorescence in KB‐3‐1 tumor spheroids. Consequently endogenous ROS generation in DU‐145 tumor spheroids was increased in the presence of either IA or 2‐DDG, which was abolished upon coincubation with ebselen. Exogenous addition of pyruvate significantly reduced ROS generation, increased P‐gp expression as well as efflux of the P‐gp substrate doxorubicin. Doxorubicin transport was significantly blunted by 2‐DDG and IA, indicating that inhibition of glycolysis reversed the multidrug resistance phenotype. In summary our data demonstrate that P‐gp expression in tumor spheroids is closely related to the glycolytic metabolism of tumor cells and can be downregulated by glycolysis inhibitors via mechanisms that involve changes in the cellular redox state. J. Cell. Biochem. 109: 434–446, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Coronary arterioles of exercise-trained (EX) pigs have enhanced nitric oxide (NO.)-dependent dilation. Evidence suggests that the biological half-life of NO. depends in part on the management of the superoxide anion. The purpose of this study was to test the hypothesis that expression of cytosolic copper/zinc-dependent superoxide dismutase (SOD)-1 is increased in coronary arterioles as a result of exercise training. Male Yucatan pigs either remained sedentary (SED, n = 4) or were EX (n = 4) on a motorized treadmill for 16-20 wk. Individual coronary arterioles ( approximately 100-microm unpressurized internal diameter) were dissected and frozen. Coronary arteriole SOD-1 protein (via immunoblots) increased as a result of exercise training (2.16 +/- 0.35 times SED levels) as did SOD-1 enzyme activity (measured via inhibition of pyrogallol autooxidation; approximately 75% increase vs. SED). In addition, SOD-1 mRNA levels (measured via RT-PCR) were higher in EX arterioles (1.68 +/- 0.16 times the SED levels). There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins. Thus chronic aerobic exercise training selectively increases the levels of SOD-1 mRNA, protein, and enzymatic activity in porcine coronary arterioles. Increased SOD-1 could contribute to the enhanced NO.-dependent dilation previously observed in EX porcine coronary arterioles by improving management of superoxide in the vascular cell environment, thus prolonging the biological half-life of NO.  相似文献   

5.
6.
7.
Intrinsic expression of the multidrug resistance (MDR) transporter P-glycoprotein (Pgp) may be regulated by reactive oxygen species (ROS). A transient expression of Pgp was observed during the growth of multicellular tumor spheroids. Maximum Pgp expression occurred in tumor spheroids with a high percentage of quiescent, Ki-67-negative cells, elevated glutathione levels, increased expression of the cyclin-dependent kinase inhibitors p27Kip1 and p21WAF-1 as well as reduced ROS levels and minor activity of the mitogen-activated kinase (MAPK) members c-Jun amino-terminal kinase (JNK), extracellular signal-regulated kinase ERK1,2, and p38 MAPK. Raising intracellular ROS by depletion of glutathione with buthionine sulfoximine (BSO) or glutamine starvation resulted in down-regulation of Pgp and p27Kip1, whereas ERK1,2 and JNK were activated. Down-regulation of Pgp was furthermore observed with low concentrations of hydrogen peroxide and epidermal growth factor, indicating that ROS may regulate Pgp expression. The down-regulation of Pgp following BSO treatment was abolished by agents interfering with receptor tyrosine kinase signaling pathways, i.e. the protein kinase C inhibitors bisindolylmaleimide I (BIM-1) and Ro-31-8220, the p21ras farnesyl protein transferase inhibitor III, the c-Raf inhibitor ZM 336372 and PD98059, which inhibits ERK1,2 activation. ROS involved as second messengers in receptor tyrosine kinase signaling pathways may act as negative regulators of Pgp expression.  相似文献   

8.
Membrane remodeling in the periacrosomal plasma membrane (PAPM) of boar spermatozoa during incubation in capacitation medium was examined by the freeze-fracture technique. In the preservation medium (PM) group, the major small (about 8 nm) intramembranous particles (IMP) and the minor large (> 10 nm) IMP were distributed evenly in the PAPM. The IMP-free area increased during capacitation. To correct the IMP-free area, arithmetically redistributed (ARD)-IMP density was used for statistical analysis. In the PM group, the mean density +/- SD of large IMP was 379 +/- 64 and 266 +/- 58/microm2, and that of small IMP was 1450 +/- 155 and 672 +/- 252/microm2 in protoplasmic (P) and external (E) faces, respectively. During capacitation, the significant (P < 0.01) reduction of large IMP density was encountered only in the E face of a few incubation groups, while that of the small IMP density occurred in the P face by 2 h. Consequently, reduction of the total IMP density of both faces was not significant in the large IMP, but it was significant (P < 0.01) in the small IMP. One-fifth of the total small IMP density reduced by 2 h. Filipin-sterol complexes (FSC) were numerous in the PAPM, and FSC-free areas also increased during capacitation. The mechanism of IMP-free area formation and the behavior of the small IMP in the PAPM during capacitation were discussed in relation to membrane stability.  相似文献   

9.
Reactive oxygen species (ROS) have been proposed to mediate vasodilation in the microcirculation. We investigated the role of ROS in arachidonic acid (AA)-induced coronary microvascular dilation. Porcine epicardial coronary arterioles (110 +/- 4 microm diameter) were mounted onto pipettes in oxygenated Krebs buffer. Vessels were incubated with vehicle or 1 mM Tiron (a nonselective ROS scavenger), 250 U/ml polyethylene-glycolated (PEG)-superoxide dismutase (SOD; an O2- scavenger), 250 U/ml PEG-catalase (a H2O2 scavenger), or the cyclooxygenase (COX) inhibitors indomethacin (10 microM) or diclofenac (10 microM) for 30 min. After endothelin constriction (30-60% of resting diameter), cumulative concentrations of AA (10(-10)-10(-5)M) were added and internal diameters measured by video microscopy. AA (10-7 M) produced 37 +/- 6% dilation, which was eliminated by the administration of indomethacin (4 +/- 7%, P < 0.05) or diclofenac (-8 +/- 8%, P < 0.05), as well as by Tiron (-4 +/- 5%, P < 0.05), PEG-SOD (-10 +/- 6%, P < 0.05), or PEG-catalase (1 +/- 4%, P < 0.05). Incubation of small coronary arteries with [3H]AA resulted in the formation of prostaglandins, which was blocked by indomethacin. In separate studies in microvessels, AA induced concentration-dependent increases in fluorescence of the oxidant-sensitive probe dichlorodihydrofluorescein diacetate, which was inhibited by pretreatment with indomethacin or by SOD + catalase. We conclude that in porcine coronary microvessels, COX-derived ROS contribute to AA-induced vasodilation.  相似文献   

10.
We determined the roles of reactive oxygen species (ROS) in the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated microglia. LPS treatment increased intracellular ROS in rat microglia dose-dependently. Pre-treatment with superoxide dismutase (SOD)/catalase, or SOD/catalase mimetics that can scavenge intracellular ROS, significantly attenuated LPS-induced release in PGE2. Diphenylene iodonium (DPI), a non-specific NADPH oxidase inhibitor, decreased LPS-induced PGE2 production. In addition, microglia from NADPH oxidase-deficient mice produced less PGE2 than those from wild-type mice following LPS treatment. Furthermore, LPS-stimulated expression of COX-2 (determined by RT-PCR analysis of COX-2 mRNA and western blot for its protein) was significantly reduced by pre-treatment with SOD/catalase or SOD/catalase mimetics. SOD/catalase mimetics were more potent than SOD/catalase in reducing COX-2 expression and PGE2 production. As a comparison, scavenging ROS had no effect on LPS-induced nitric oxide production in microglia. These results suggest that ROS play a regulatory role in the expression of COX-2 and the subsequent production of PGE2 during the activation process of microglia. Thus, inhibiting NADPH oxidase activity and subsequent ROS generation in microglia can reduce COX-2 expression and PGE2 production. These findings suggest a potential therapeutic intervention strategy for the treatment of inflammation-mediated neurodegenerative diseases.  相似文献   

11.
12.
Arsenic trioxide has been known to regulate many biological functions such as cell proliferation, apoptosis, differentiation, and angiogenesis in various cell lines. We investigated the involvement of GSH and ROS such as H(2)O(2) and O(2)(*-) in the death of As4.1 cells by arsenic trioxide. The intracellular ROS levels were changed depending on the concentration and length of incubation with arsenic trioxide. The intracellular O(2)(*-) level was significantly increased at all the concentrations tested. Arsenic trioxide reduced the intracellular GSH content. Treatment of Tiron, ROS scavenger decreased the levels of ROS in 10 microM arsenic trioxide-treated cells. Another ROS scavenger, Tempol did not decrease ROS levels in arsenic trioxide-treated cells, but slightly recovered the depleted GSH content and reduced the level of apoptosis in these cells. Exogenous SOD and catalase did not reduce the level of ROS, but did decrease the level of O(2)(*-). Both of them inhibited GSH depletion and apoptosis in arsenic trioxide-treated cells. In addition, ROS scavengers, SOD and catalase did not alter the accumulation of cells in the S phase induced by arsenic trioxide. Furthermore, JNK inhibitor rescued some cells from arsenic trioxide-induced apoptosis, and this inhibitor decreased the levels of O(2)(*-) and reduced the GSH depletion in these cells. In summary, we have demonstrated that arsenic trioxide potently generates ROS, especially O(2)(*-), in As4.1 juxtaglomerular cells, and Tempol, SOD, catalase, and JNK inhibitor partially rescued cells from arsenic trioxide-induced apoptosis through the up-regulation of intracellular GSH levels.  相似文献   

13.
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N‐methyl‐d ‐aspartate receptor (NMDAR) and glutathione (GSH)‐based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2O2), and antioxidants in glutamate‐rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK‐801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2O2‐induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2O2. We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.  相似文献   

14.
9,10-Phenanthrenequinone (9,10-PQ), a major component in diesel exhaust particles, is suggested to generate reactive oxygen species (ROS) through its redox cycling, leading to cell toxicity. l-Xylulose reductase (XR), a NADPH-dependent enzyme in the uronate pathway, strongly reduces alpha-dicarbonyl compounds and was thought to act as a detoxification enzyme against reactive carbonyl compounds. Here, we have investigated the role of intracellular ROS generation in apoptotic signaling in human acute T-lymphoblastic leukemia MOLT-4 cells treated with 9,10-PQ and the role of XR in the generation of ROS. Treatment with 9,10-PQ elicited not only apoptotic signaling, including mitochondrial membrane dysfunction and activation of caspases and poly(ADP-ribose) polymerase, but also intracellular ROS generation and consequent glutathione depletion. The apoptotic effects of 9,10-PQ were drastically mitigated by pretreatment with intracellular ROS scavengers, such as N-acetyl-l-cysteine, glutathione monoethyl ester, and polyethylene glycol-conjugated catalase, indicating that intracellular ROS generation is responsible for the 9,10-PQ-evoked apoptosis. Surprisingly, the ROS generation and cytotoxicity by 9,10-PQ were augmented in an XR-transformed cell line. XR indeed reduced 9,10-PQ and produced superoxide anion through redox cycling. In addition, the expression levels of XR and its mRNA in the T lymphoma cells were markedly enhanced after the exposure to 9,10-PQ, and the induction was completely abolished by the ROS scavengers. Moreover, the 9,10-PQ-induced apoptosis was partially inhibited by the pretreatment with XR-specific inhibitors. These results suggest that initially produced ROS induce XR, which accelerates the generation of ROS.  相似文献   

15.
The majority of endogenous reactive oxygen species (ROS) are produced in the mitochondrial respiratory chain. An imbalance in ROS production alters the intracellular redox homeostasis, triggers DNA damage, and contributes to cancer development and progression. This study identified a novel protein, reactive oxygen species modulator 1 (Romo1), which is localized in the mitochondria. Romo1 was found to increase the level of ROS in the cells. Increased Romo1 expression was observed in various cancer cell lines. This suggests that the increased Romo1 expression during cancer progression may cause persistent oxidative stress to tumor cells, which can increase their malignancy.  相似文献   

16.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

17.
High resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopy was used to determine if the same cell line (MG-63 human osteosarcoma cells) grown in monolayer or as small (about 50-80 microm in diameter), three-dimensional tumor spheroids with no hypoxic center has different metabolic characteristics. Consequently, the (1)H NMR spectra were obtained from both types of cultures and then compared. The results indicate that the type of cellular spatial array determines specific changes in MG-63 cells. In particular, small but significant differences in lactate and alanine indicating a perturbation in energy metabolism were observed in the two cell models. In addition, although variations in CH(2) and CH(3) groups were also seen, it is not possible at this time to establish if lipid metabolism is truly different in cells and spheroids.  相似文献   

18.
We have investigated a novel function of calpeptin, a commonly used inhibitor of calpain, in the production of intracellular reactive oxygen species (ROS) in Swiss 3T3 fibroblasts. Calpeptin induced a rapid increase of intracellular ROS by a dose-dependent manner, with a maximal increase at 10 min, which was inhibited by ROS scavengers, catalase and 2-MPG. However, other calpain inhibitors, E64d and N-acetyl-Leu-Leu-Nle-CHO (ALLN), had no effect on the level of intracellular ROS, indicating that calpain was not involved in the ROS production by calpeptin. The role of Rho in the ROS production by calpain was studied by scrape-loading of C3 transferase. C3 transferase, which inhibited stress fiber formation by calpeptin, had no effect on the ROS production in response to calpeptin, suggesting that Rho was not involved in the ROS production by calpeptin. But the elevation of intracellular ROS was inhibited by mepacrine, a phospholipase A2 inhibitor. In addition, scavenging intracellular ROS by the incubation with catalase and 2-MPG had no effect on the stress fiber formation by calpeptin. These results suggested that calpeptin stimulated the production of intracellular ROS and stress fiber formation by independent mechanisms.  相似文献   

19.
It has been implicated that reactive oxygen species (ROS) play important roles in modulating tumor progression. However, the mechanisms by which redox-regulated tumor progression are largely unknown. We previously demonstrated that reduced intracellular redox conditions could be achieved in stably transfected small cell lung cancer cells with gamma-glutamylcysteine synthetase (gamma-GCSh) cDNA which encodes a rate-limiting enzyme in the biosynthesis of glutathione (GSH), a major physiological redox regulator. In the present study, using DNA microarray analyses, we compared the expression profiles between the gamma-GCSh-transfected cells and their nontransfected counterpart. We observed downregulation of several matrix metalloproteinases (MMPs), i.e., MMPI and MMP3, and MMP10 in the transfected cells. Dot blot and Northern blot hybridizations confirmed that, among the 18 MMP gene family members and four tissue inhibitors of matrix metalloprotein family (TIMP) analyzed, the expression levels of these three MMPs were consistently reduced. Transiently increased gamma-GCSh expression using tetracycline-inducible gamma-GCSh adenoviral expression system also showed down-regulation of MMP3 and MMP10, but not MMP1. Our results demonstrated that redox regulation of MMP1, MMP3 and MMP10 expression depend upon different modes of redox manipulation. These results bear implication that antioxidant modulation of antitumor progression may be contributed at least in part by the downregulation of a subset of metrix metalloproteins.  相似文献   

20.

Background

Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out.

Methodology/Principal Findings

Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism.

Conclusions

The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号