共查询到20条相似文献,搜索用时 0 毫秒
1.
Brassinolide (BR), a novel plant growth-regulating steroidal lactone, markedly retarded the abscission of leaf explants of Calamondin (Citrus madurensis Lour.), when dissolved in water and fed through the petiole. BR was effective at concentrations as low as 0.021 M, and showed a stronger effect than IAA which also retarded abscission. Trifluoperazine (TFP), an inhibitor of the calmodulin-calcium complex, accelerated abscission, and this acceleration could be counteracted by a simultaneous addition of IAA or BR, the effect of IAA being stronger. BR in lanolin applied to the cut surface of the leaf blade of the explant showed a weaker abscission-retarding effect than that applied in water via the petiole. BR and IAA also markedly retarded the abscission of fruitlet explants of Calamondin. 相似文献
2.
Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach 总被引:18,自引:0,他引:18
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes. 相似文献
3.
The role of polygalacturonase in leaf abscission was studied in explants of Phaseolus vulgaris L. cv. Red Kidney. Bean polygalacturonase was partially characterized and comparisons were made between the bean enzyme and previously reported higher plant polygalacturonases. Polygalacturonase isolated from bean leaf abscission zones has a pH optimum between 4.5 and 5.0 and hydrolyzed polygalacturonides in an exo-fashion. Activity was found to be higher with a deesterified substrate than with an esterified pectin. No correlation between polygalacturonase activity and abscission was observed. Activity remained virtually constant over the course of abscission in explants aged either in air or in ethylene. The enzyme was primarily localized in the abscission zone, however, indicating a possible involvement in the abscission process. A theoretical model which could explain the relationship between polygalacturonase and bean leaf abscission is discussed. 相似文献
4.
Effect of 2,5-norbornadiene on abscission and ethylene production in citrus leaf explants 总被引:4,自引:0,他引:4
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene. 相似文献
5.
Activity of pectin esterase and cellulase in the abscission zone of citrus leaf explants 总被引:4,自引:11,他引:4 下载免费PDF全文
The activity of pectin esterase and cellulase in abscission of citrus explants was studied. No relation was established between pectin esterase and abscission, while cellulase activity was markedly increased before abscission and for a certain period after excision. IAA and cycloheximide delay abscission and cellulase activity, while ethylene and, to a lesser extent, GA3 accelerate them. Application of cycloheximide during the lag period and before cellulase activity can be measured, inhibits to a certain extent the formation of cellulase. An escape from the inhibitory effect of cycloheximide is detected when inhibitor is supplied at the end of the lag period. 相似文献
6.
Abscission of citrus leaf explants: no correlation with naphthaleneacetic Acid conjugation in the abscission zone 下载免费PDF全文
The role of α-naphthaleneacetic acid (NAA) in the control of abscission in Citrus (Citrus sinensis L. Osbeck) leaf explants and its conjugation were studied in non-aged and 24-hour-aged explants. Dipping non-aged explants in 1.5 micromolar NAA for 15 minutes immediately after excision did not delay abscission whereas 150 micromolar NAA effectively delayed it. As incubation time was prolonged up to 24 hours after excision, the delaying effect of both concentrations gradually increased. In general, both concentrations did not delay abscission when applied to 24-hour-aged explants held for an additional period of up to 24 hours. The uptake and conjugation of 14C-NAA to glucose and aspartic acid were similar in petiole, abscission zone, and leaf blade of non-aged and aged tissues, for all NAA concentrations. No correlation was established between the kinetics of abscission and the rate of conjugation in the abscission zone. 相似文献
7.
8.
Effect of exposure to subfreezing temperatures on ethylene evolution and leaf abscission in citrus 总被引:1,自引:2,他引:1 下载免费PDF全文
Young R 《Plant physiology》1971,48(6):724-727
Citrus leaves exposed to subfreezing temperatures evolved ethylene at rates between 0.1 and 38.3 microliters per kilogram fresh weight per hour whereas untreated leaves evolved between 0.01 and 0.50 microliter per kilogram fresh weight per hour. Leaves not injured by freezing temperatures did not abscise, and ethylene evolution was near normal after 2 days. Freeze-injured leaves continued evolving high ethylene levels 4 or 5 days subsequent to freeze injury, and many of the freeze-killed leaves abscised. Supportive evidence suggested freeze-induced ethylene was involved in freeze-induced leaf abscission; whereas freeze-inhibited abscission was not due to a lack of ethylene but injury to other metabolic systems necessary for abscission. 相似文献
9.
Mechanical wounding and abscission in citrus 总被引:1,自引:0,他引:1
Fruit detachment force (FDF), ethylene evolution, fruit and leaf drop were determined in Citrus sinensis for periods up to 96 h after mechanical wounding. Injury by removing a thin section of mature fruit flavedo reduced FDF, increased ethylene evolution and promoted abscission. Injuring flavedo 1 cm below the calyx was more effective at reducing FDF than injuring flavedo at the equator or the blossom‐end of mature fruit. Injuring the calyx or peduncle of mature fruit, or injuring three leaves closest to the mature fruit did not reduce FDF. Immature fruitlets either did not abscise or underwent low rates of abscission in response to mechanical wounding, depending on age. Inhibiting ethylene binding in wounded mature fruit with 1‐methylcyclopropene (1‐MCP) increased ethylene evolution compared with wounded fruit alone, but the reduction in FDF was similar. When an ethylene biosynthesis inhibitor (aminoethoxyvinylglycine, AVG) was used, reduction in FDF of wounded mature fruit exposed to AVG was similar to that of wounded fruit alone but ethylene production was markedly reduced. Wounding mature leaf blades in the presence or absence of 1‐MCP resulted in elevated but equal ethylene evolution up to 48 h after wounding, however, no leaf drop occurred. Thereafter, ethylene evolution was higher in 1‐MCP‐treated wounded leaves. Removing up to 77% of the total mature leaf area did not cause leaf drop, nor did wounding tissue across the laminar or petiolar abscission zones. Leaflets of 5 mm length reached nearly 100% abscission after mechanical wounding, whereas wounding leaves 20 mm length resulted in 15% abscission. The data suggest that mechanical wounding of flavedo results in mature fruit abscission, and ethylene binding may not be mandatory to initiate abscission in citrus fruit. The differential response of fruit and leaves at different ages to wounding may be related to potential contribution to carbohydrate accumulation, and production and sensitivity of tissues to an abscission signal(s). 相似文献
10.
11.
The influence of applied auxin on abscission in explants (excised cotyledonary nodes) of cotton was investigated. 相似文献
12.
The stylar abscission bioassay was used to identify five stimulators of lemon (Citrus limon cv. Lisbon) abscission in pistil explants. The stimulators (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea, N6-benzyladenine, kinetin, zeatin, and N6-isopentenyladenine), which are all cytokinins, accelerated the timing of expiant abscission when they were added as supplements (100 μM) to the test medium. To study possible relationships between cytokinins, ethylene, and abscission, we measured accumulating ethylene concentrations in sealed cultures and endogenous 1 -aminocyclopropane-1-carboxylic aicd (ACC) in explants incubated on test medium plus or minus 100 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron), 100 μM N6-benzyladenine (bzl6Ade), or 2 μM picloram, an inhibitor of stylar abscission. Although ethylene accumulated to similar levels in all treatments, the concentrations obtained with picloram and thidiazuron were, respectively, higher and lower than those obtained in control cultures. The accumulation of ethylene in cultures with bzl6Ade, on the other hand, was not significantly different from controls. ACC concentrations in explants remained fairly constant in all treatments during the incubations, except in explants on thidiazuron, in which case the ACC concentration declined slightly. We conclude that cytokinins can stimulateCitrus abscissionin vitro and that this stimulation is not accompanied by marked effects on either measurable ethylene or ACC concentrations. Our finding that 100 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, counteracts the stimulation of abscission by bzl6Ade suggests that a minimum level of ethylene production is required for the cytokinin effect. The possibility that cytokinins affect other aspects related to ethylene, such as biosynthetic rates, metabolism, or tissue retention, is not excluded by our results. 相似文献
13.
Summary Gibberellic acid (GA3) accelerated abscission when applied, in a wide concentration range, to excised abscission zones of cotton. Abscission was promoted equally by distal or proximal applications of from 10-3 to 100 g. A slight, but inconsistent, abscission retardation was obtained with distal applications of 10-6 and 10-7 g.Seven different gibberellins accelerated abscission equally when applied distally at amounts of 5×10-4 to 5×10-1 g per abscission zone. At 5×10-5 g there were great differences in effectiveness; their activities can be ranked: A3>A5A4>A7=A8>A1=A9.The ready translocatability of GA3 was suggested when 1.0 or 0.01 g was applied to one petiole, and the opposite untreated petiole abscised at the same time as the treated one. However, 0.001 g was not effective in moving across the stem and inducing abscission of the untreated petiole.The rate of abscission of petioles treated with 1.0 g GA3 was not affected by increasing the length of the petiole from 3 to 9 mm. However, abscission of petioles treated with smaller amounts is inversely proportional to petiole length.The rate of abscission of petioles treated with GA3 decreased with increasing seedling age; there was a simultaneous increase in abscission rate of the controls.Part of this research was based on a portion of a thesis submitted by the senior author to the Graduate Division, University of California, Davis, in partial fulfillment of the requirements for the M.S. degree. 相似文献
14.
15.
16.
GuangYan Zhong Moshe Huberman Xu Qiao Feng Edward C. Sisler Doron Holland Raphael Goren 《Physiologia plantarum》2001,113(1):134-141
Pre-treatment of citrus leaves and leaf explants ( Citrus sinensis [L.] Osbeck cv. Shamouti), with 1-methylcyclopropene (1-MCP), induced endogenous ethylene production when leaves were further incubated in air. The induction of ethylene production was 1-MCP concentration-dependent. Abscission was concomitantly delayed. In leaves pre-treated with 1-MCP followed by exposure to ethylene, abscission was significantly delayed in comparison with those without 1-MCP pre-treatment. When leaf explants were co-treated for 24 h with ethylene and 1-MCP, abscission was delayed quite efficiently. The Lineweaver-Burke plot yielded a half-maximal value of 0.234 μl l−1 for the effect of ethylene on abscission. 1-MCP−1 competed kinetically with ethylene with a Ki value of approximately 1.4−5.5 nl l−1 1-MCP. Under these experimental conditions there was some competition between 1-MCP and ethylene. However, ethylene was not able to completely counteract the inhibitory effect of 1-MCP. Pre-treatment with 1-MCP, followed by exogenous ethylene treatment, suppressed the induction of endo- β -glucanase (EG) activity at the laminar abscission zone. The ethylene-dependent accumulation of the hydrolyse gene was demonstrated by blocking the accumulation of CsCel a1 mRNA by 1-MCP. Six hours of exposure of leaves to 1-MCP at various times during a total of 24 h ethylene treatment efficiently reversed ethylene induction of CsCel a1 gene at mRNA level up to 18 h. The results demonstrate that the induction of abscission by ethylene is controlled at mRNA level at the abscission zone. 相似文献
17.
Masaru Sakamoto Ikuko Munemura Reiko Tomita Kappei Kobayashi 《Plant signaling & behavior》2008,3(11):1014-1015
Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles.Key words: leaf abscission, reactive oxygen species, H2O2, in vitro, ethylene, auxin, pepper, NADPH oxidase 相似文献
18.
Javier Agustí Paz Merelo Manuel Cercós Francisco R Tadeo Manuel Talón 《BMC plant biology》2009,9(1):127-20
Background
Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. 相似文献19.
三叶半夏叶片一步成苗离体培养技术 总被引:2,自引:2,他引:2
以药用植物三叶半夏叶片为材料,通过比较直接和间接器官发生两种途径,建立了半夏一步成苗的快速繁殖技术体系。结果表明,经过愈伤组织阶段的一步成苗培养基为MS+0.5mg/L2,4-D+1.0mg/LKT,90d左右方可得到再生植株,植株分化率为74%,每个外植体上分化的块茎数为5.61±1.04。附加NAA与BA两种激素对一步成苗培养基进行优化,筛选出一步成苗最佳培养基MS+0.5mg/LNAA+0.5mg/LBA,60d后就可直接发育成完整植株,植株分化率为76%,每个外植体上分化的块茎数高达9.97±0·81,对这种培养基上的再生小植株进行移栽,1个月后,移栽成活率达100%。 相似文献
20.
Giovanni Iapichino Steve MeCullech Tony H. H. Chen 《Plant Cell, Tissue and Organ Culture》1992,30(3):237-241
A protocol for high frequency adventitious shoot regeneration adventitious shoot regeneration from leaf explants of Rhododendron spp. has been developed. The highest percentage of regeneration and the greatest number of shoots were obtained when leaf explants were cultured on Anderson's medium containing 4.9 M IBA and 73.8 M 2iP. Genotypic variation was observed for adventitious shoot regeneration potential among the seven cultivars tested. Regeneration frequencies ranged from 0 to 96%. Lodestar had the highest rate of regeneration after 3 months of culture with 96% shoot regeneration and an average of 14 shoots per explant. Regenerated shoots were rooted in soil in about 2 months. This protocol should be useful in applying gene transfer techniques to Rhododendron improvement.Abbreviations IAA
1-H-indole-3-acetic acid
- NAA
1-naphthaleneacetic acid
- IBA
1-H-indole-3-butyric acid
- 2,4-d
2,4-dichlorophenoxyacetic acid
- BA
6-benzyladenine
- 2iP
N-(3-methyl-2-butenyl)-1-H-purine-6-amine 相似文献