首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
光动力疗法是一种使用光敏药物和激光活化治疗肿瘤疾病的方法.用特定波长的光辐照肿瘤部位,能使选择性聚集在肿瘤组织的光敏药物活化,引发光化学反应破坏肿瘤.然而,光动力疗法在临床上的应用却一直存在治疗深度受限的问题.本文分析了光动力疗法在临床应用中的局限性,并指出光动力疗法联合声动力疗法是一种可以克服光动力疗法治疗深度局限性...  相似文献   

2.
磁疗法对内科疾病的应用进展   总被引:2,自引:0,他引:2  
周万松 《生物磁学》2005,5(4):54-56
近年来磁疗法对内科疾病的治疗应用较广泛,不断取得进展,对多科疾病的应用取得了较好的治疗效果,为了了解与促进磁疗法对内科疾病的应用,综述如下。  相似文献   

3.
高压氧疗法广泛应用于各类疾病的治疗。但因其独特的治疗方法和治疗环境,造成患者在接受治疗的过程中,心理上承受着一定的压力。由于个人条件不同(生理因素、年龄、性别、社会地位及文化素质等),心理反应大小也有着差别,现就所见在治疗过程中患者的心理状态及其护理措施介绍如下: 一、产生精神心理反应的原因:  相似文献   

4.
糖尿病视网膜病变是糖尿病最常见、最主要的微血管并发症之一,具有高发病率,高致盲率的特点,严重影响了人类的生存质量。控制高血糖和改善组织缺氧无疑是防治糖尿病微血管病变的有效方法。如果对糖尿病视网膜病变及时进行治疗,能延缓其发展并能提高病人的生活质量。近年来,随着对糖尿病发病机制的深入研究,很多方法用于防治糖尿病视网膜病人都取得了一定的疗效。而高压氧治疗是许多急慢性疾病的首选治疗方法。已有基础和临床研究证实,高压氧治疗对糖尿病视网膜病变安全有效。因此,作为一种新疗法,高压氧疗法可能会为糖尿病视网膜病变的治疗带来更广泛的应用前景。  相似文献   

5.
《生物磁学》2013,(21):I0004-I0004
英国布里斯托大学研究人员近日在《神经回路前沿》期刊上发表论文称,他们确认了一种关键分子,可以诱发大脑中记忆形成的化学过程,其对大脑分子记忆开关的控制是形成记忆的一个关键步骤。相关研究为开发逆转记忆缺失的疗法提供了一种新的思路。  相似文献   

6.
三位一体数字中医通络罐是将拔罐疗法和按摩疗法结合起来,并加入了热疗和磁疗效应,运用现代微机技术,自动调节和控制治疗过程,使其在拔罐过程中不但能进行负压吸引,而且能够进行热疗和磁疗的一种仪器。本文介绍了三位一体数字中医通络罐的基本工作原理及应用。  相似文献   

7.
磁疗法治疗乳腺疾病的应用进展   总被引:3,自引:1,他引:3  
周万松 《生物磁学》2004,4(4):31-33
应用磁疗法治疗的疾病较广泛,对多种疾病有较好或有一定的治疗效果,已成为一种常用的物理治疗方法。应用磁疗法治疗乳腺疾病也取得了一定的治疗效果。由于乳腺小叶增生、乳腺纤维瘤,乳腺囊性增生的乳腺疾病,是女性的常见疾病,影响女性健康,给女性患者带来疾病的痛苦,因此,寻求一种既有效,而且便于操作与使用的治疗方法,  相似文献   

8.
恶性胶质瘤是最常见的中枢神经系统肿瘤,随着对肿瘤分子机制理解的深入,分子靶向疗法渐成热点。这一新疗法能改善肿瘤患者的治疗效果,同时降低药物毒性,属于肿瘤的生物治疗范畴,其原理主要是针对在肿瘤发生发展过程中一些起关键作用的分子机制进行干预而达到抗肿瘤的目的。其有助于提高患者生存质量、延长生存时间,为攻克胶质瘤带来了希望。  相似文献   

9.
昆虫滞育与激素调节   总被引:1,自引:1,他引:0  
<正> 滞育是广泛地存在于昆虫界的一种现象,是昆虫在长期与环境条件斗争中所获得一种特殊生存本领。滞育利于虫体适应不利环境条件及种群同步生长发育。然而,昆虫要实现滞育,还必须通过昆虫体内激素的调节控制。因此,滞育是一个从接收外界环境信号一直到体内激素进行调节复杂的生理过程。激素控制滞育在不同种昆虫中各不相同,下面按虫态滞育类型加以叙述。 一、卵滞育 卵滞育即胚胎滞育,可以发  相似文献   

10.
结核病是单一病原体感染中致死率最高的传染性疾病之一,其致病菌结核分枝杆菌在感染过程中诱发的过度炎症反应是造成患者组织损伤、器官衰竭的关键因素。如何改善这一病理反应对于结核病的治疗具有积极作用。宿主导向疗法(host-directed therapy,HDT)是近几年提出的一种新型抗结核辅助治疗策略。与传统抗生素相比,抗结核的HDT治疗策略从直接杀伤结核分枝杆菌转向了调节宿主的免疫反应,一方面减轻细菌感染诱发的过度炎症反应以及病理损伤,另一方面通过增强宿主本身的免疫力来控制感染的细菌。本文对宿主导向疗法在抗结核方面的研究进展进行了系统性的总结,以期为抗结核辅助疗法的开发提供一定的理论基础和思路。  相似文献   

11.
T-cell lymphomas represent a subpopulation of non-Hodgkin lymphomas with poor outcomes when treated with conventional chemotherapy. A variety of novel agents have been introduced as new treatment strategies either as first-line treatment or in conjunction with chemotherapy. Immunotherapy has been demonstrated to be a promising area for new therapeutics, including monoclonal antibodies and adoptive cellular therapeutics. T-cell therapeutics have been shown to have significant success in the treatment of B-cell malignancies and are rapidly expanding as potential treatment options for other cancers including T-cell lymphomas. Although treating T-cell lymphomas with T-cell therapeutics has unique challenges, multiple targets are currently being studied both preclinically and in clinical trials.  相似文献   

12.
Bacteriophage and their lysins for elimination of infectious bacteria   总被引:4,自引:0,他引:4  
When phages were originally identified, the possibility of using them as antibacterial agents against pathogens was immediately recognized and put into practise based on the knowledge available at the time. However, with the advent of antibiotics a decline in the use of phage as therapeutics followed. Phages did, however, become more useful in the study of fundamental aspects of molecular biology and in the diagnostic laboratory for the identification of pathogenic bacteria. More recently, the original application of phage as therapeutics to treat human and animal infections has been rekindled, particularly in an era where antibiotic resistance has become so problematic/commonplace. Phage lysins have also been studied and utilized in their own right as potential therapeutics for the treatment of bacterial infections. Indeed the past decade has seen a considerable amount of research worldwide focused on the engineering of phages as antibacterial agents in a wide range of applications. Furthermore, the US Food and Drug Administration and/or the US Department of Agriculture have recently approved commercial phage preparations to prevent bacterial contamination of livestock, food crops, meat and other foods. Such developments have prompted this review into the status of phage research as it pertains to the control of infectious bacteria.  相似文献   

13.
《Genomics》2021,113(3):1291-1307
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.  相似文献   

14.
Alloimmunization is a crippling concern in the management of patients undergoing administration of protein therapeutics as evidenced in replacement therapy and other treatment procedures. Several issues in the genesis and modulation of such deleterious immune responses have been studied. While authors have focused on the downstream events of the specific immune response and suggested modification of protein therapeutics to eliminate epitopes that interact with B cell receptors, T cell receptors, or MHCII molecules, the mechanisms underlying Ag interaction with APCs, a step upstream of immune effectors, have been grossly neglected. We wish to emphasize that the recent knowledge in understanding the capacities of an APC to handle an Ag and the importance of the surrounding microenvironment in this process are crucial for designing novel protein therapeutics with reduced immunogenicity.  相似文献   

15.
16.
Emerging drug resistance varieties and hyper-virulent strains of microorganisms have compelled the scientific fraternity to develop more potent and less harmful therapeutics. Antimicrobial peptides could be one of such therapeutics. This review is an attempt to explore antifungal peptides naturally produced by prokaryotes as well as eukaryotes. They are components of innate immune system providing first line of defence against microbial attacks, especially in eukaryotes. The present article concentrates on types, structures, sources and mode of action of gene-encoded antifungal peptides such as mammalian defensins, protegrins, tritrpticins, histatins, lactoferricins, antifungal peptides derived from birds, amphibians, insects, fungi, bacteria and their synthetic analogues such as pexiganan, omiganan, echinocandins and Novexatin. In silico drug designing, a major revolution in the area of therapeutics, facilitates drug development by exploiting different bioinformatics tools. With this view, bioinformatics tools were used to visualize the structural details of antifungal peptides and to predict their level of similarity. Current practices and recent developments in this area have also been discussed briefly.  相似文献   

17.
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.  相似文献   

18.
More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) — for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.  相似文献   

19.
作为一种快速高效的体外蛋白合成手段,无细胞蛋白表达体系(Cell-free Protein Synthesis,CFPS)一直以来就被广泛应用于基础生物学领域的研究。与传统的基于细胞的体内表达体系相比,CFPS突破了细胞的生理限制,其可调控性强、对毒性蛋白的耐受力高,使得许多很难在体内合成的复杂蛋白在体外顺利表达。近年来随着研究人员不断对CFPS进行优化,通过简化制备工艺、开发价格低廉的能量再生系统、稳定底物供应、促进蛋白正确折叠等方式,成功研发出生产效率高、成本低廉、反应体积大的表达体系。凭借其高通量和大规模的蛋白表达优势,CFPS为解决生物制药领域中面临的难题提供了新的解决思路,并成功地应用于高通量药物筛选、大规模生产重组蛋白药物、个体化定制肿瘤疫苗等领域,显示出其在生物制药领域的重要应用潜力。  相似文献   

20.
Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号