共查询到20条相似文献,搜索用时 15 毫秒
1.
The spikes of alphaviruses are composed of three copies of an E2-E1 heterodimer. The E1 protein possesses membrane fusion activity, and the E2 protein, or its precursor form, p62 (sometimes called PE2), controls this function. Both proteins are, together with the viral capsid protein, translated from a common C-p62-E1 coding unit. In an earlier study, we showed that the p62 protein of Semliki Forest virus (SFV) dimerizes rapidly and efficiently in the endoplasmic reticulum (ER) with the E1 protein originating from the same translation product (so-called heterodimerization in cis) (B.-U. Barth, J. M. Wahlberg, and H. Garoff, J. Cell Biol. 128:283-291, 1995). In the present work, we analyzed the ER translocation and folding efficiencies of the p62 and E1 proteins of SFV expressed from separate coding units versus a common one. We found that the separately expressed p62 protein translocated and folded almost as efficiently as when it was expressed from a common coding unit, whereas the independently expressed E1 protein was inefficient in both processes. In particular, we found that the majority of the translocated E1 chains were engaged in disulfide-linked aggregates. This result suggests that the E1 protein needs to form a complex with p62 to avoid aggregation. Further analyses of the E1 aggregation showed that it occurred very rapidly after E1 synthesis and could not be avoided significantly by the coexpression of an excess of p62 from a separate coding unit. These latter results suggest that the p62-E1 heterodimerization has to occur very soon after E1 synthesis and that this is possible only in a cis-directed reaction which follows the synthesis of p62 and E1 from a common coding unit. We propose that the p62 protein, whose synthesis precedes that of the E1 protein, remains in the translocon of the ER and awaits the completion of E1. This strategy enables the p62 protein to complex with the E1 protein immediately after the latter has been made and thereby to control (suppress) its fusion activity. 相似文献
2.
3.
Recent studies have demonstrated the importance of heptad repeat regions within envelope proteins of viruses in mediating conformational changes at various stages of viral infection. However, it is not clear if heptad repeats have a direct role in the actual fusion event. Here we have synthesized, fluorescently labeled and functionally and structurally characterized a wild-type 70 residue peptide (SV-117) composed of both the fusion peptide and the N-terminal heptad repeat of Sendai virus fusion protein, two of its mutants, as well as the fusion peptide and heptad repeat separately. One mutation was introduced in the fusion peptide (G119K) and another in the heptad repeat region (I154K). Similar mutations have been shown to drastically reduce the fusogenic ability of the homologous fusion protein of Newcastle disease virus. We found that only SV-117 was active in inducing lipid mixing of egg phosphatidylcholine/phosphatidyiglycerol (PC/PG) large unilamellar vesicles (LUV), and not the mutants nor the mixture of the fusion peptide and the heptad repeat. Functional characterization revealed that SV-117, and to a lesser extent its two mutants, were potent inhibitors of Sendai virus-mediated hemolysis of red blood cells, while the fusion peptide and SV-150 were negligibly active alone or in a mixture. Hemagglutinin assays revealed that none of the peptides disturb the binding of virions to red blood cells. Further studies revealed that SV-117 and its mutants oligomerize similarly in solution and in membrane, and have similar potency in inducing vesicle aggregation. Circular dichroism and FTIR spectroscopy revealed a higher helical content for SV-117 compared to its mutants in 40 % tifluorethanol and in PC/PG multibilayer membranes, respectively, ATR-FTIR studies indicated that SV-117 lies more parallel with the surface of the membrane than its mutants. These observations suggest a direct role for the N-terminal heptad repeat in assisting the fusion peptide in mediating membrane fusion. 相似文献
4.
5.
Freedman SJ Song HK Xu Y Sun ZY Eck MJ 《The Journal of biological chemistry》2003,278(15):13462-13467
SNARE proteins mediate intracellular membrane fusion by forming a coiled-coil complex to merge opposing membranes. A "fusion-active" neuronal SNARE complex is a parallel four-helix bundle containing two coiled-coil domains from SNAP-25 and one coiled-coil domain each from syntaxin-1a and VAMP-2. "Prefusion" assembly intermediate complexes can also form from these SNAREs. We studied the N-terminal coiled-coil domain of SNAP-23 (SNAP-23N), a non-neuronal homologue of SNAP-25, and its interaction with other coiled-coil domains. SNAP-23N can assemble spontaneously with the coiled-coil domains from SNAP-23C, syntaxin-4, and VAMP-3 to form a heterotetrameric complex. Unexpectedly, pure SNAP-23N crystallizes as a coiled-coil homotetrameric complex. The four helices have a parallel orientation and are symmetrical about the long axis. The complex is stabilized through the interaction of conserved hydrophobic residues comprising the a and d positions of the coiled-coil heptad repeats. In addition, a central, highly conserved glutamine residue (Gln-48) is buried within the interface by hydrogen bonding between glutamine side chains derived from adjacent subunits and to solvent molecules. A comparison of the SNAP-23N structure to other SNARE complex structures reveals how a simple coiled-coil motif can form diverse SNARE complexes. 相似文献
6.
The synthesis and processing of the periplasmic components of the leucine transport system of E coli have been studied to determine the role played by transmembrane potential in protein secretion. Both the leucine-isoleucine-valine binding protein and the leucine-specific binding protein are synthesized as precursors with 23 amino acid N-terminal leader sequences. The processing of these precursors is sensitive to the transmembrane potential. Since the amino acid sequence and the crystal structure have been determined for the leucine-isoleucine-valine binding protein, it and the closely related leucine-specific binding protein represent convenient models in which to examine the mechanism of protein secretion in E coli. A model for secretion has been proposed, suggesting a role for transmembrane potential. In this model, the N-terminal amino acid sequence of the precursor is assumed to form a hairpin of two helices. The membrane potential may orient this structure to make it accessible to processing. In addition, the model suggests that a negatively charged, folded domain of the secretory protein may electrophorese toward the trans-positive side of the membrane, thus providing an additional role for the transmembrane potential. 相似文献
7.
8.
J Cladera I Martin J M Ruysschaert P O'Shea 《The Journal of biological chemistry》1999,274(42):29951-29959
The simian immunodeficiency virus fusion peptide constitutes a 12-residue N-terminal segment of the gp32 protein that is involved in the fusion between the viral and cellular membranes, facilitating the penetration of the virus in the host cell. Simian immunodeficiency virus fusion peptide is a hydrophobic peptide that in Me(2)SO forms aggregates that contain beta-sheet pleated structures. When added to aqueous media the peptide forms large colloidal aggregates. In the presence of lipidic membranes, however, the peptide interacts with the membranes and causes small changes of the membrane electrostatic potential as shown by fluorescein phosphatidylethanolamine fluorescence. Thioflavin T fluorescence and Fourier transformed infrared spectroscopy measurements reveal that the interaction of the peptide with the membrane bilayer results in complete disassembly of the aggregates originating from an Me(2)SO stock solution. Above a lipid/peptide ratio of about 5, the membrane disaggregation and water precipitation processes become dependent on the absolute peptide concentration rather than on the lipid/peptide ratio. A schematic mechanism is proposed, which sheds light on how peptide-peptide interactions can be favored with respect to peptide-lipid interactions at various lipid/peptide ratios. These studies are augmented by the use of the fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl ] pyridinium betaine that shows the interaction of the peptide with the membranes has a clear effect on the magnitude of the so-called dipole potential that arises from dipolar groups located on the lipid molecules and oriented water molecules at the membrane-water interface. It is shown that the variation of the membrane dipole potential affects the extent of the membrane fusion caused by the peptide and implicates the dipolar properties of membranes in their fusion. 相似文献
9.
Deletion of the cytoplasmic tail of the fusion protein of the paramyxovirus simian virus 5 affects fusion pore enlargement 下载免费PDF全文
The fusion (F) protein of the paramxyovirus simian parainfluenza virus 5 (SV5) promotes virus-cell and cell-cell membrane fusion. Previous work had indicated that removal of the SV5 F protein cytoplasmic tail (F Tail- or FDelta19) caused a block in fusion promotion at the hemifusion stage. Further examination has shown that although the F Tail- mutant is severely debilitated in promotion of fusion as measured by using two reporter gene assays and is debilitated in the formation of syncytia relative to the wild-type F protein, the F Tail- mutant is capable of promoting the transfer of small aqueous dyes. These data indicate that F Tail- is fully capable of promoting formation of small fusion pores. However, enlargement of fusion pores is debilitated, suggesting that either the cytoplasmic tail of the F protein plays a direct role in pore expansion or that it interacts with other components which control pore growth. 相似文献
10.
Zhu J Zhang CW Qi Y Tien P Gao GF 《Biochemical and biophysical research communications》2002,299(5):897-902
Recent studies have shown that paramyxovirus might adopt a similar molecular mechanism of virus entry and fusion in which the attachment glycoprotein binds receptor/s and triggers the conformational changes of the fusion protein. There are two conserved regions of heptad repeat (HR1 and HR2) in the fusion protein and they were shown with fusion-inhibition effects in many paramyxoviruses, including measles virus. They also appear to show characteristic structure in the fusion core: the HR1/HR2 forms stable six-helix coiled-coil centered by HR1 and is surrounded by HR2 (trimer of HR1/HR2), which represents the post-fusion conformational structure. In this study, we expressed the HR1 and HR2 of measles virus fusion protein as a single chain (named 2-Helix) and subsequently tested its formation of trimer. Indeed, the results do show that the HR1 and HR2 interact with each other and form stable six-helix coiled-coil bundle. This is the first member in genus Morbillivirus of family Paramyxoviridae to be confirmed with this characteristic structure and provides the basis for the HR2-inhibition effects on virus fusion/entry for measles virus. 相似文献
11.
Park SJ Seo MD Lee SK Ikeda M Longnecker R Lee BJ 《Protein expression and purification》2005,41(1):9-17
Latency of Epstein-Barr virus (EBV) is maintained by the transmembrane protein latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. LMP2A contains a cytoplasmic N-terminal domain composed of 119 amino acids, which provides signals that are responsible for the association with various signal molecules, resulting in negative regulation of B-cell signaling and the EBV lytic cycle. In the present study, to obtain N-terminal domain of LMP2A (LMP2A NTD, 13 kDa) in Escherichia coli for structural analysis, a strategy for obtaining the unfused form of LMP2A NTD without any fusion partners was proposed. Recombinant LMP2A NTD has previously been expressed using the GST fusion system in E. coli [Virology 268 (2000) 178, J. Virol. 71 (1997) 4752, Mol. Cell. Biol. 20 (2000) 8526]. However, we were unable to obtain untagged LMP2A NTD from this construct because of rapid proteolysis by thrombin. To overcome the proteolysis by thrombin, C-terminal His-tagged LMP2A NTD and intein-fused LMP2A NTD were prepared. As a result, LMP2A NTD without a fusion partner could be successfully obtained using non-enzymatic cleavage. The secondary structure of the recombinant LMP2A NTD was analyzed using circular dichroism. In aqueous solution, LMP2A NTD adopts an unordered structure, which was not affected by varying pH and salt concentration. In addition, any secondary structural components of LMP2A NTD were not induced in the membrane-mimicking environments, suggesting that LMP2A NTD may intrinsically have a random coil-like structure. The biological activity of recombinant LMP2A NTD was monitored by chemical shift perturbation in HSQC spectra of LMP2A NTD with or without WW domains, which result supports that the structural change induced by WW domains is restricted within narrow region. 相似文献
12.
Smith EC Culler MR Hellman LM Fried MG Creamer TP Dutch RE 《Journal of virology》2012,86(6):3003-3013
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion. 相似文献
13.
The N-terminal fusion peptide and the interfacial sequence preceding the transmembrane anchor of HIV-1 gp41 are required for viral fusion. Studies with synthetic peptides indicated that these regions function by destabilizing membranes, which is regarded as a crucial step in the membrane fusion reaction. However, it is not clear whether membrane destabilization is induced by these sequences in the intact gp41. We address this question by examining fusion and destabilization of membranes expressing HIV-1(IIIB) wild-type Env and two mutant Envs. (1) A Glu residue at position 2 of the gp41 fusion peptide is substituted for Val (V2E) to produce one mutant. (2) Residues 665-682 in the membrane-proximal domain are deleted to form the other. The process of membrane destabilization was monitored by the influx of Sytox, an impermeant fluorescent dye, into the Env-expressing cells following the interaction with CD4-CXCR4 complexes, and fusion was monitored by observing dye transfer between Env-expressing cells and appropriate target cells. We also monitored the conformational changes in the Envs following their interactions with CD4 and CXCR4 by immunofluorescence using an anti-gp41 mAb that reacts with the six-helix bundle. In contrast to the wild type, both Env mutants did not mediate cell fusion. The V2E Env did not mediate membrane destabilization. However, the Env with an unmodified fusion peptide but with a deletion of residues 665-682 in the membrane-proximal domain did mediate membrane destabilization. The wild type and both mutant Envs undergo conformational changes detected by the anti-gp41 six-helix bundle mAbs. Our results suggest that in intact HIV-1 Env the membrane-proximal domain is not required for membrane perturbations, but rather enables the bending of gp41 that is required for viral and target membranes to come together. Moreover, the observation that the Delta665-683 Env self-inserts its fusion peptide but does not cause fusion suggests that self-insertion of the fusion peptide is not sufficient for HIV-1 Env-mediated fusion. 相似文献
14.
Smith EC Gregory SM Tamm LK Creamer TP Dutch RE 《The Journal of biological chemistry》2012,287(35):30035-30048
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion. 相似文献
15.
Role of the cytoplasmic domain of the Newcastle disease virus fusion protein in association with lipid rafts 下载免费PDF全文
To explore the association of the Newcastle disease virus (NDV) fusion (F) protein with cholesterol-rich membrane domains, its localization in detergent-resistant membranes (DRMs) in transfected cells was characterized. After solubilization of cells expressing the F protein with 1% Triton X-100 at 4 degrees C, ca. 40% of total, cell-associated F protein fractionated with classical DRMs with densities of 1.07 to l.14 as defined by flotation into sucrose density gradients. Association of the F protein with this cell fraction was unaffected by the cleavage of F(0) to F(1) and F(2) or by coexpression of the NDV attachment protein, the hemagglutinin-neuraminidase protein (HN). Furthermore, elimination by mutation, of potential palmitate addition sites in and near the F-protein transmembrane domain had no effect on F-protein association with DRMs. Rather, specific deletions of the cytoplasmic domain of the F protein eliminated association with classical DRMs. Comparisons of deletions that affected fusion activity of the protein and deletions that affected DRM association suggested that there is no direct link between the cell-cell fusion activity of the F protein and DRM association. Furthermore, depletion of cholesterol from cells expressing F and HN protein, while eliminating DRM association, had no effect on the ability of these cells to fuse with avian red blood cells. These results suggest that specific localization of the F protein in cholesterol-rich membrane domains is not required for cell-to-cell fusion. Paramyxovirus F-protein cytoplasmic domains have been implicated in virus assembly. The results presented here raise the possibility that the cytoplasmic domain is important in virus assembly at least in part because it directs the protein to cholesterol-rich membrane domains. 相似文献
16.
Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. 总被引:9,自引:6,他引:9 下载免费PDF全文
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix. 相似文献
17.
Previous studies showed that the N-terminal 32 amino acids of sterol carrier protein-2 ((1-32)SCP(2)) comprise an amphipathic alpha-helix essential for SCP(2) binding to membranes [Huang et al. (1999) Biochemistry 38, 13231]. However, it is unclear whether membrane interaction of the (1-32)SCP(2) portion of SCP(2) is in itself sufficient to mediate intermembrane sterol transfer, possibly by altering membrane structure. In this study a fluorescent sterol exchange assay was used to resolve these issues and demonstrated that the SCP(2) N-terminal peptide (1-32)SCP(2) did not by itself enhance intermembrane sterol transfer but potentiated the ability of the SCP(2) protein to stimulate sterol transfer. Compared with SCP(2) acting alone, (1-32)SCP(2) potentiated the sterol transfer activity of SCP(2) by increasing the initial rate of sterol transfer by 2.9-fold and by decreasing the half-time of sterol transfer by 10-fold (from 11.6 to 1.2 min) without altering the size of the transferable fractions. The ability of a series of SCP(2) mutant N-terminal peptides to potentiate SCP(2)-mediated sterol transfer was directly correlated with membrane affinity of the respective peptide. N-Terminal peptide (1-32)SCP(2) did not potentiate intermembrane sterol transfer by binding sterol (dehydroergosterol), altering membrane fluidity (diphenylhexatriene) or membrane permeability (leakage assay). Instead, fluorescence lifetime measurements suggested that SCP(2) and (1-32)SCP(2) bound to membranes and thereby elicited a shift in membrane sterol microenvironment to become more polar. In summary, these data for the first time showed that while the N-terminal membrane binding domain of SCP(2) was itself inactive in mediating intermembrane sterol transfer, it nevertheless potentiated the ability of SCP(2) to enhance sterol transfer. 相似文献
18.
Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis 总被引:3,自引:0,他引:3 下载免费PDF全文
Sun M Rothermel TA Shuman L Aligo JA Xu S Lin Y Lamb RA He B 《Journal of virology》2004,78(10):5068-5078
The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import. Previously, it was reported that recombinant SV5 lacking the C terminus of the V protein (rSV5VDeltaC) induces a severe cytopathic effect (CPE) in tissue culture whereas wild-type (wt) SV5 infection does not induce CPE. In this study, the nature of the CPE and the mechanism of the induction of CPE were investigated. Through the use of DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, and propidium iodide staining assays, it was shown that rSV5VDeltaC induced apoptosis. Expression of wt V protein prevented apoptosis induced by rSV5VDeltaC, suggesting that the V protein has an antiapoptotic function. Interestingly, rSV5VDeltaC induced apoptosis in U3A cells (a STAT1-deficient cell line) and in the presence of neutralizing antibody against IFN, suggesting that the induction of apoptosis by rSV5VDeltaC was independent of IFN and IFN-signaling pathways. Apoptosis induced by rSV5VDeltaC was blocked by a general caspase inhibitor, Z-VAD-FMK, but not by specific inhibitors against caspases 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13, suggesting that rSV5VDeltaC-induced apoptosis can occur in a caspase 12-dependent manner. Endoplasmic reticulum stress can lead to activation of caspase 12; compared to the results seen with mock and wt SV5 infection, rSV5VDeltaC infection induced ER stress, as demonstrated by increased expression levels of known ER stress indicators GRP 78, GRP 94, and GADD153. These data suggest that rSV5VDeltaC can trigger cell death by inducing ER stress. 相似文献
19.
Mayuko Okabe Tohru Minamino Katsumi Imada Keiichi Namba May Kihara 《FEBS letters》2009,583(4):743-748
FliI, the ATPase involved in bacterial flagellar protein export, forms a complex with its regulator FliH in the cytoplasm and hexamerizes upon docking to the export gate composed of integral membrane proteins. The extreme N-terminal region of FliI is involved not only in its interaction with FliH but also in its oligomerization, but the regulatory mechanism of oligomerization remains unclear. Using in-frame 10-residue deletions within the 100 residues of the N-terminal domain, we demonstrate that the first 20 residues are required for FliH binding and that the conformation of the N-terminal domain is sensitive to the export function, even though the oligomerization and FliH-binding ability are retained and the ATPase activity is maintained in most of the deletion variants. 相似文献
20.
Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A 总被引:12,自引:0,他引:12
Penin F Brass V Appel N Ramboarina S Montserret R Ficheux D Blum HE Bartenschlager R Moradpour D 《The Journal of biological chemistry》2004,279(39):40835-40843
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a membrane-associated, essential component of the viral replication complex. Here, we report the three-dimensional structure of the membrane anchor domain of NS5A as determined by NMR spectroscopy. An alpha-helix extending from amino acid residue 5 to 25 was observed in the presence of different membrane mimetic media. This helix exhibited a hydrophobic, Trprich side embedded in detergent micelles, while the polar, charged side was exposed to the solvent. Thus, the NS5A membrane anchor domain forms an in-plane amphipathic alpha-helix embedded in the cytosolic leaflet of the membrane bilayer. Interestingly, mutations affecting the positioning of fully conserved residues located at the cytosolic surface of the helix impaired HCV RNA replication without interfering with the membrane association of NS5A. In conclusion, the NS5A membrane anchor domain constitutes a unique platform that is likely involved in specific interactions essential for the assembly of the HCV replication complex and that may represent a novel target for antiviral intervention. 相似文献