首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified >60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.  相似文献   

2.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

3.
Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in “basal” snakes such as pythons and boas, while heteromorphic and well differentiated in “advanced” (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non‐caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.  相似文献   

4.
The canonical model of sex‐chromosome evolution predicts that sex‐antagonistic (SA) genes play an instrumental role in the arrest of XY recombination and ensuing Y chromosome degeneration. Although this model might account for the highly differentiated sex chromosomes of birds and mammals, it does not fit the situation of many lineages of fish, amphibians or nonavian reptiles, where sex chromosomes are maintained homomorphic through occasional XY recombination and/or high turnover rates. Such situations call for alternative explanatory frameworks. A crucial issue at stake is the effect of XY recombination on the dynamics of SA genes and deleterious mutations. Using individual‐based simulations, we show that a complete arrest of XY recombination actually benefits females, not males. Male fitness is maximized at different XY recombination rates depending on SA selection, but never at zero XY recombination. This should consistently favour some level of XY recombination, which in turn generates a recombination load at sex‐linked SA genes. Hill–Robertson interferences with deleterious mutations also impede the differentiation of sex‐linked SA genes, to the point that males may actually fix feminized phenotypes when SA selection and XY recombination are low. We argue that sex chromosomes might not be a good localization for SA genes, and sex conflicts seem better solved through the differential expression of autosomal genes.  相似文献   

5.
6.
Sex determination in major vertebrate groups appears to be very variable, including systems of male heterogamety, female heterogamety and a variety of genetic and environmental sex determining systems. Yet comparative studies of sex chromosomes and sex determining genes now suggest that these differences are more apparent than real. The sex chromosomes of even widely divergent groups now appear to have changed very little over the last 300+ million years, and even independently derived sex chromosomes seem to have followed the same set of evolutionary rules. The sex determining pathway seems to be extremely conserved, although the control of the genes in this pathway is vested in different elements. We present a scenario for the independent evolution of XY male heterogamety in mammals and ZW female heterogamety in birds and some reptiles. We suggest that sex determining genes can be made redundant, and replaced by control at another step of a conserved sex determining pathway, and how choice of a gene as a sex switch has led to the evolution of new sex chromosome systems. J. Exp. Zool. 290:449-462, 2001.  相似文献   

7.
Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.  相似文献   

8.
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.  相似文献   

9.
The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. In this study, we designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety. We did not detect any genetic overlap with the previously characterized ZW SLRs in willows, which map to a different chromosome. The S. nigra SLR is characterized by strong recombination suppression across a 2 MB region and an excess of low-frequency alleles, resulting in a low Tajima’s D compared to the remainder of the genome. We speculate that either a recent bottleneck in population size or factors related to positive or background selection generated this differential pattern of Tajima’s D on the X and autosomes. This discovery provides insights into factors that may influence the evolution of sex chromosomes in plants and contributes to a large number of recent observations that underscore their dynamic nature.Subject terms: Plant evolution, Quantitative trait  相似文献   

10.
陆静  陈赢男  尹佟明 《植物学报》2021,56(1):90-103
雌雄异株植物是研究性别决定遗传机制及性染色体起源与进化的理想材料,而克隆性别决定基因是解析性别决定遗传机制的关键。木本植物中有丰富的雌雄异株植物,且包括2种相反的性别决定系统:XY型(雌株为同配型的XX,雄株为异配型的XY)和ZW型(雌株为异配型的ZW,雄株为同配型的ZZ)。此外,不同性别植株的经济价值也有所不同。在木...  相似文献   

11.
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)   总被引:1,自引:0,他引:1  
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.  相似文献   

12.
Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor.  相似文献   

13.
 First results from two strategies aimed at elucidating the genetics of sex in the dioecious genus Actinidia Lindl. (Actinidiaceae) support the hypothesis that sex-determining genes are localized in a pair of chromosomes which, although cytologically indistinguishable, function like an XX/XY system with male heterogamety. A. chinensis Planch., a close relative of the kiwifruit [A. deliciosa (A. Chev.) CF Liang et AR Ferguson], has diploid and tetraploid races. Bulk segregant analysis to find sex-linked markers revealed two markers whose inheritance patterns in three diploid families showed X and Y linkage and indicated that the male is the heterogametic sex. Some recombination between the markers and the sex-determining loci was also demonstrated. Sex ratios in 12 progenies from controlled crosses varied around 1:1, as expected for an XX/XY system. Received: 20 December 1995 / Revision accepted: 24 April 1997  相似文献   

14.
Squamates may be an attractive group in which to study the influence of sex chromosomes on speciation rates because of the repeated evolution of heterogamety (both XY and ZW), as well as an apparently large number of taxa with environmental sex-determination.  相似文献   

15.
THE EVOLUTION OF HETEROMORPHIC SEX CHROMOSOMES   总被引:2,自引:0,他引:2  
The facts and ideas which have been discussed lead to the following synthesis and model. 1. Heteromorphic sex chromosomes evolved from a pair of homomorphic chromosomes which had an allelic difference at the sex-determining locus. 2. The first step in the evolution of sex-chromosome heteromorphism involved either a conformational or a structural difference between the homologues. A structural difference could have arisen through a rearrangement such as an inversion or a translocation. A conformational difference could have occurred if the sex-determining locus was located in a chromosomal domain which behaved as a single control unit and involved a substantial segment of the chromosome. It is assumed that any conformational difference present in somatic cells would have been maintained in meiotic prophase. 3. Lack of conformational or structural homology between the sex chromosomes led to meiotic pairing failure. Since pairing failure reduced fertility, mechanisms preventing it had a selective advantage. Meiotic inactivation (heterochromatinization) of the differential region of the X chromosome in species with heterogametic males and euchromatinization of the W in species with heterogametic females are such mechanisms, and through them the pairing problems are avoided. 4. Structural and conformational differences between the sex chromosomes in the heterogametic sex reduced recombination. In heterogametic males recombination was reduced still further by the heterochromatinization of the X chromosome, which evolved in response to selection against meiotic pairing failure. 5. Suppression of recombination resulted in an increase in the mutation rate and an increased rate of fixation of deleterious mutations in the recombination-free chromosome regions. Functional degeneration of the genetically isolated regions of the Y and W was the result. In XY males this often led to further meiotic inactivation of the differential region of the X chromosome, and in this way an evolutionary positive-feedback loop may have been established. 6. Structural degeneration (loss of material) followed functional degeneration of Y or W chromosomes either because the functionally degenerate genes had deleterious effects which made their loss a selective advantage, or because shorter chromosomes were selectively neutral and became fixed by chance. 7. The evolutionary routes to sex-chromosome heteromorphism in groups with female heterogamety are more limited than in those with male heterogamety. Oocytes are usually large and long-lived, and are likely to need the products of X- or Z-linked genes. Meiotic inactivation of these chromosomes is therefore unlikely. In the oocytes of ZW females, meiotic pairing failure is avoided through euchromatinization of the W rather than heterochromatinization of the Z chromosome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Evolutionary transitions between sex‐determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature‐dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature‐dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex‐determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed‐mechanism system that has not been revealed by previous approaches. This study solves two long‐standing puzzles of the evolution of sex‐determining mechanisms by illuminating the evolutionary pathways and endpoints.  相似文献   

17.
We investigated sex-specific recombination rates in Hyla arborea, a species with nascent sex chromosomes and male heterogamety. Twenty microsatellites were clustered into six linkage groups, all showing suppressed or very low recombination in males. Seven markers were sex linked, none of them showing any sign of recombination in males (r=0.00 versus 0.43 on average in females). This opposes classical models of sex chromosome evolution, which envision an initially small differential segment that progressively expands as structural changes accumulate on the Y chromosome. For autosomes, maps were more than 14 times longer in females than in males, which seems the highest ratio documented so far in vertebrates. These results support the pleiotropic model of Haldane and Huxley, according to which recombination is reduced in the heterogametic sex by general modifiers that affect recombination on the whole genome.  相似文献   

18.
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.  相似文献   

19.
Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.  相似文献   

20.
Mammals present an XX/XY system of chromosomal sex determination, males being the heterogametic sex. Comparative studies of the gene content of sex chromosomes from the major groups of mammals reveal that most Y genes have X-linked homologues and that X and Y share homologous pseudoautosomal regions. These observations, together with the presence of the two homologous regions (pseudoautosomal regions) at the tips of the sex chromosomes, suggest that these chromosomes began as an ordinary pair of homologous autosomes. Birds present a ZW/ZZ system of chromosomal sex determination where females are the heterogametic sex. In this case, avian sex chromosomes are derived from different pairs of autosomes than mammals. The evolutionary pathway from the autosomal homomorphic departure to the present-day heteromorphic sex chromosomes in mammals includes suppression of X-Y recombination, differentiation of the nascent non-recombining regions, and progressive autosomal addition and attrition of the sex chromosomes. Recent results indicate that the event marking the beginning of the differentiation between the extant X and Y chromosomes occurred about 300 million years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号