首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Tropical monodominant forests are rare communities with low tree species diversity. Species monodominance is not the product of a single mechanism, but the result of a set of not yet fully understood integrated ecological factors acting together. We compared populations of Brosimum rubescens in monodominant and mixed forests in Southern Amazonia to test whether leaf functional traits are ecological factors related to monodominance. Individuals of B. rubescens in the mixed forest invest in conservative strategies, while those in the monodominant forest invest in acquisitive strategies. Leaf functional traits, such as petiole length and adaxial cuticle thickness, could be associated with the monodominance of B. rubescens. Our study highlights for the first time the power of integrating leaf functional traits as a component of the set of ecological conditions to explain species monodominance. B. rubescens showed different functional strategies to establish and maintain its population in different forests, which makes it a strong competitor for resources, such as water and light, through variation in its leaf functional traits. We also suggest that such high plasticity can be an important condition for the persistence of the species over time.

  相似文献   

2.
Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.  相似文献   

3.
Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) driven by edaphic conditions but rather by trait combinations of G. dewevrei that aid in achieving monodominance. Functional community structure between these monodominant and mixed forests has, however, not yet been compared. Additionally, little is known about nondominant species in the monodominant forest community. These two topics are addressed in this study. We investigate the functional community structure of 10 one‐hectare plots of monodominant and mixed forests in a central region of the Congo basin, in DR Congo. Thirteen leaf and wood traits are measured, covering 95% (basal area weighted) of all species present in the plots, including leaf nutrient contents, leaf isotopic compositions, specific leaf area, wood density, and vessel anatomy. The trait‐based assessment of G. dewevrei shows an ensemble of traits related to water use and transport that could be favorable for its location near forest rivers. Moreover, indications have been found for N and P limitations in the monodominant forest, possibly related to ectomycorrhizal associations formed with G. dewevrei. Reduced leaf N and P contents are found at the community level for the monodominant forest and for different nondominant groups, as compared to those in the mixed forest. In summary, this work shows that environmental filtering does prevail in the monodominant G. dewevrei forest, leading to lower functional diversity in this forest type, with the dominant species showing beneficial traits related to its common riverine locations and with reduced soil N and P availability found in this environment, both coregulating the tree community assembly.  相似文献   

4.
Monodominant tropical forests occur on several continents, including the Brazilian Amazon. In this study, we tested the hypothesis that seedling escape from leaf herbivory contributes to the maintenance of the monodominant Brosimum rubescens forest. The study was undertaken both in a monodominant forest of B. rubescens and in an adjacent seasonal forest in the transitional zone between the Cerrado and the Amazonian forest biomes. Percentage of leaf area damaged and herbivory rates were evaluated on young and mature leaves of seedlings of Brosimum rubescens, Protium pilosissimum and Tetragastris altissima in the understory and in the gap between the monodominant and seasonal forests. Little evidence of any significant relationship between leaf herbivory and seedling density indicates that the monodominant species does not follow the hypothesized pattern of an intensive herbivore attack in areas of higher seedling density. The escape of Brosimum rubescens from herbivore pressure under conditions of high seedling density may be part of a set of conditions that determine the maintenance of this monodominant forest.  相似文献   

5.
Various explanations have been put forward for monodominance in otherwise diverse tropical forests. This study assesses if the monodominance of Peltogyne gracilipes on Maraca Island in the northern Amazon can be related to edaphic factors. The basal area of P. gracilipes and the five other most common tree species on Maraca Island (Astrocaryum aculeatum, Attalea maripa, Ecclinusa guianensis, Licania kunthiana and Pradosia surinamensis) were recorded in 30 regularly-spaced 0.5 ha plots distributed over an area of 25 km2, for which data on topography and concentration of mineral elements in the soil were also obtained. Stems of P. gracilipes accounted for ≥50% of the basal area in five of the plots, which we consider indicative of monodominance, whilst the highest relative basal area that any of the other species achieved in any plot was 31%. The soils data explained more of the variation in the basal area of P. gracilipes than it did for the other five species. The presence vs. absence and basal area of P. gracilipes was positively related to concentrations of magnesium (Mg), aluminium (Al), iron (Fe), phosphorus (P) and silt in the soil and to Mg:Ca ratios. These soils were found in the plots at the lowest elevations, which suggests that drainage factors may also be important. Overall, our results suggest that edaphic factors may explain, at least partially, monodominance in this Amazonian forest.  相似文献   

6.
以华北落叶松和青杆为主的寒温性针叶林是庞泉沟自然保护区的重要林型,也是主要保护对象之一。通过空间代时间构建庞泉沟自然保护区寒温性针叶林演替的时间序列,序列1是华北落叶松单优群落稳定发展的过程,序列2是从华北落叶松单优群落演替至华北落叶松-青杆共优群落再到青杆单优群落的过程,采用点格局分析法和与Monte-Carlo拟合检验对演替过程中华北落叶松和青杆的分布格局及其相互关系进行了研究。结果表明:(1)序列1在华北落叶松单优群落稳定发展过程中,华北落叶松的分布格局由集群分布趋向于随机分布,甚至在0—2.5 m上表现为均匀分布,驱动力是种内竞争引起的自疏现象。序列2从华北落叶松单优群落演替至青杆单优群落过程中,华北落叶松的分布格局同样是由集群分布趋向于随机分布,驱动力主要来自于由于青杄侵入扩散而形成的种间竞争;青杄集群的尺度逐步增大,驱动力主要是种群拓殖和种内竞争。(2)二者种间关系,在华北落叶松单优群落阶段无明显相关,共优阶段由于竞争在0—6.5 m尺度上呈显著正相关,在青杄单优群落,青杄竞争获胜,在0—2.5 m尺度上无明显相关,二者种间关系的变化主要来自于群落剩余资源驱动下的种内种间竞争。  相似文献   

7.
The contribution of mycorrhizal associations to maintaining tree diversity patterns in tropical rain forests is poorly known. Many tropical monodominant trees form ectomycorrhizal (EM) associations, and there is evidence that the EM mutualism contributes to the maintenance of monodominance. It is assumed that most other tropical tree species form arbuscular mycorrhizal (AM) associations, and while many mycorrhizal surveys have been done, the mycorrhizal status of numerous tropical tree taxa remains undocumented. In this study, we tested the assumption that most tropical trees form AM associations by sampling root vouchers from tree and liana species in monodominant Dicymbe corymbosa forest and an adjacent mixed rain forest in Guyana. Roots were assessed for the presence/absence of AM and EM structures. Of the 142 species of trees and lianas surveyed, three tree species (the monodominant D. corymbosa, the grove-forming D. altsonii, and the non-dominant Aldina insignis) were EM, 137 were exclusively AM, and two were non-mycorrhizal. Both EM and AM structures were observed in D. corymbosa and D. altsonii. These results provide empirical data supporting the assumption that most tropical trees form AM associations for this region in the Guiana Shield and provide the first report of dual EM/AM colonization in Dicymbe species. Dual colonization of the Dicymbe species should be further explored to determine if this ability contributes to the establishment and maintenance of site dominance. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Bacteria and fungi drive the cycling of plant litter in forests, but little is known about their role in tropical rain forest nutrient cycling, despite the high rates of litter decay observed in these ecosystems. However, litter decay rates are not uniform across tropical rain forests. For example, decomposition can differ dramatically over small spatial scales between low-diversity, monodominant rain forests, and species-rich, mixed forests. Because the climatic patterns and soil parent material are identical in co-occurring mixed and monodominant forests, differences in forest floor accumulation, litter production, and decomposition between these forests may be biotically mediated. To test this hypothesis, we conducted field and laboratory studies in a monodominant rain forest in which the ectomycorrhizal tree Dicymbe corymbosa forms >80% of the canopy, and a diverse, mixed forest dominated by arbuscular mycorrhizal trees. After 2 years, decomposition was significantly slower in the monodominant forest (P < 0.001), but litter production was significantly greater in the mixed forest (P < 0.001). In the laboratory, we found microbial community biomass was greater in the mixed forest (P = 0.02), and the composition of fungal communities was distinct between the two rain forest types (P = 0.001). Sequencing of fungal rDNA revealed a significantly lower richness of saprotrophic fungi in the monodominant forest (19 species) relative to the species-rich forest (84 species); moreover, only 4% percent of fungal sequences occurred in both forests. These results show that nutrient cycling patterns in tropical forests can vary dramatically over small spatial scales, and that changes in microbial community structure likely drive the observed differences in decomposition.  相似文献   

9.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

10.
Spatial patterns and interspecific associations of plant species in forests are important for revealing how species interact with each other and with the environment, and hence have important implications for optimal forest management and restoration in degraded forest ecosystems. In this paper, the O-ring statistics were used to characterize the spatial patterns and interspecific associations of eight dominant tree species in two 1-ha old-growth karst forest plots in Maolan National Natural Reserve, southwestern China. We found that most of the eight dominant tree species in two forests were continuously regenerating populations. Six species (Platycarya longipes, Acer wangchii, Clausena dunniana, Castanopsis carlesii var. spinulosa, Distylium myricoides, and Rhododendron latoucheae) exhibited significant aggregations at the majority of scales while others (Celtis biondii and Cyclobalanopsis myrsinaefolia) showed a random distribution pattern at most scales. Negative association was a dominant pattern for most species pairs in the two plots, while positive associations were found at most scales for only two species pairs (PlatycaryaClausena and CastanopsisRhododendron). Results also indicated that the two main factors of habitat complexity and heterogeneity—the elevation and rock-bareness rate—play important roles in determining spatial distribution patterns and interspecific associations of tree species in karst forests of Maolan. Thus, the observed spatial patterns among the eight tree species are influenced by habitat heterogeneity in the context of karst topographical variations. The partitioning of habitat niches contributes to the promoting species coexistence in species-rich karst forests. The differences of species features in spatial patterns and associations should be paid more attention when planning forest management and developing restoration strategies.  相似文献   

11.

Background

Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest.

Methodology/Principal Findings

We sampled top soil (0–5, 5–10, 10–20, 20–30 cm) and subsoil (150–200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart), all chosen to be topographically homogeneous. Analysis – subjected to Bonferroni correction procedure – revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance.

Conclusions/Significance

Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.  相似文献   

12.
Lianas are poorly characterized for central African forests. We quantify variation in liana composition, diversity and community structure in different forest types in the Yangambi Man and Biosphere Reserve, Democratic Republic of Congo. These attributes of liana assemblages were examined in 12 1-ha plots, randomly demarcated within regrowth forest, old growth monodominant forest, old growth mixed forest and old growth edge forest. Using a combination of multivariate and univariate community analyses, we visualize the patterns of these liana assemblage attributes and/or test for their significant differences across forest types. The combined 12 1-ha area contains 2,638 lianas (≥2 cm diameter) representing 105 species, 49 genera and 22 families. Liana species composition differed significantly across forest types. Taxonomic diversity was higher in old growth mixed forests compared to old growth monodominant and regrowth forests. Trait diversity was higher than expected in the regrowth forest as opposed to the rest of forest types. Similarly, the regrowth forest differed from the rest of forest types in the pattern of liana species ecological traits and diameter frequency distribution. The regrowth forest was also less densely populated in lianas and had lower liana total basal area than the rest of forest types. We speculate that the mechanism of liana competitive exclusion by dominant tree species is mainly responsible for the lower liana species diversity in monodominant compared to mixed forests. We attribute variation in liana community structure between regrowth and old growth forests mostly to short development time of size hierarchies.  相似文献   

13.
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.  相似文献   

14.
Old-growth rain forests that are dominated by a single canopy species occur throughout the tropics, though they account for a limited proportion of the total rain forest area. These forests have been considered anomalies in which development of a more diverse community is deflected by harsh conditions. Very poor soils or an otherwise extreme environment may promote monodominance by excluding potentially competing species, but it is now apparent that monodominant tropical forests also develop under more benign conditions. Field studies have shown that a single species may dominate on undisturbed sites where the soils are similar to those of adjacent old-growth, mixed forests. In these situations the dominant is a superior competitor and/or is particularly tolerant to stresses such as shade. Assertion of dominance by a single species in an old-growth forest appears most likely in areas where the species pool contains few late-succession species with similar life history traits.  相似文献   

15.
Tropical forests are renowned for their high diversity, yet in many sites a single tree species accounts for the majority of the individuals in a stand. An explanation for these monodominant forests remains elusive, but may be linked to mycorrhizal symbioses. We tested three hypotheses by which ectomycorrhizas might facilitate the dominance of the tree, Oreomunnea mexicana, in montane tropical forest in Panama. We tested whether access to ectomycorrhizal networks improved growth and survival of seedlings, evaluated whether ectomycorrhizal fungi promote seedling growth via positive plant–soil feedback, and measured whether Oreomunnea reduced inorganic nitrogen availability. We found no evidence that Oreomunnea benefits from ectomycorrhizal networks or plant–soil feedback. However, we found three‐fold higher soil nitrate and ammonium concentrations outside than inside Oreomunnea‐dominated forest and a correlation between soil nitrate and Oreomunnea abundance in plots. Ectomycorrhizal effects on nitrogen cycling might therefore provide an explanation for the monodominance of ectomycorrhizal tree species worldwide.  相似文献   

16.
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.  相似文献   

17.
Seedling Traits Determine Drought Tolerance of Tropical Tree Species   总被引:3,自引:0,他引:3  
Water availability is the most important factor determining tree species distribution in the tropics, but the underlying mechanisms are still not clear. In this study, we compared functional traits of 38 tropical tree species from dry and moist forest, and quantified their ability to survive drought in a dry‐down experiment in which wilting and survival were monitored. We evaluated how seedling traits affect drought survival, and how drought survival determines species distribution along the rainfall gradient. Dry forest species tended to have compound leaves, high stem dry matter content (stem dry mass/fresh mass), and low leaf area ratio, suggesting that reduction of transpiration and avoidance of xylem cavitation are important for their success. Three functional groups were identified based on the seedling traits: (1) drought avoiders with a deciduous leaf habitat and taproots; (2) drought resisters with tough tissues (i.e., a high dry matter content); and (3) light‐demanding moist forest species with a large belowground foraging capacity. Dry forest species had a longer drought survival time (62 d) than moist forest species (25 d). Deciduousness explained 69 percent of interspecific variation in drought survival. Among evergreen species, stem density explained 20 percent of the drought survival. Drought survival was not related to species distribution along the rainfall gradient, because it was mainly determined by deciduousness, and species with deciduous seedlings are found in both dry and moist forests. Among evergreen species, drought survival explained 28 percent of the variation in species position along the rainfall gradient. This suggests that, apart from drought tolerance, other factors such as history, dispersal limitation, shade tolerance, and fire shape species distribution patterns along the rainfall gradient.  相似文献   

18.
The investigation of ecological processes that maintain species coexistence is revealing in naturally disturbed environments such as the white‐sand tropical forest, which is subject to periodic flooding that might pose strong habitat filtering to tree species. Congeneric species are a good model to investigate the relative importance of ecological processes that maintain high species diversity because they tend to exploit the same limiting resources and/or have similar tolerance limits to the same environmental conditions due to their close phylogenetic relationship. We aim to find evidence for the action and relative importance of different processes hypothesized to maintain species coexistence in a white‐sand flooded forest in Brazil, taking advantage of data on the detailed spatial structure of populations of congeneric species. Individuals of three Myrcia species were tagged, mapped, and measured for diameter at soil height in a 1‐ha plot. We also sampled seven environmental variables in the plot. We employed several spatial point process models to investigate the possible action of habitat filtering, interspecific competition, and dispersal limitation. Habitat filtering was the most important process driving the local distribution of the three Myrcia species, as they showed associations, albeit of different strength, to environmental variables related to flooding. We did not detect spatial patterns, such as spatial segregation and smaller size of nearby neighbors, that would be consistent with interspecific competition among the three congeneric species and other co‐occurring species. Even though congeners were spatially independent, they responded to differences in the environment. Last, dispersal limitation only led to spatial associations of different size classes for one of the species. Given that white‐sand flooded forests are highly threatened in Brazil, the preservation of their different habitats is of utmost importance to the maintenance of high species richness, as flooding drives the distribution of species in the community.  相似文献   

19.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

20.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号