共查询到20条相似文献,搜索用时 15 毫秒
1.
In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3′untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious. 相似文献
2.
Anti Vasemägi Janne Sulku Matthieu Bruneaux Olaf Thalmann Hannu Mäkinen Mikhail Ozerov 《Ecology and evolution》2017,7(11):3826-3835
Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter‐ and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine‐ and three‐spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine‐spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat‐dependent effects of segregating amino acid variants. 相似文献
3.
HANS ELLEGREN 《Molecular ecology》2008,17(21):4586-4596
Genomics profoundly affects most areas of biology, including ecology and evolutionary biology. By examining genome sequences from multiple species, comparative genomics offers new insight into genome evolution and the way natural selection moulds DNA sequence evolution. Functional divergence, as manifested in the accumulation of nonsynonymous substitutions in protein-coding genes, differs among lineages in a manner seemingly related to population size. For example, the ratio of nonsynonymous to synonymous substitution (dN/dS) is higher in apes than in rodents, compatible with Ohta's nearly neutral theory of molecular evolution, which suggests that the fixation of slightly deleterious mutations contributes to protein evolution at an extent negatively correlated with effective population size. While this supports the idea that functional evolution is not necessarily adaptive, comparative genomics is uncovering a role for positive Darwinian selection in 10–40% of all genes in different lineages, estimates that are likely to increase when the addition of more genomes gives increased power. Again, population size seems to matter also in this context, with a higher proportion of fixed amino acid changes representing advantageous mutations in large populations. Genes that are particularly prone to be driven by positive selection include those involved with reproduction, immune response, sensory perception and apoptosis. Genetic innovations are also frequently obtained by the gain or loss of complete gene sequences. Moreover, it is increasingly realized, from comparative genomics, that purifying selection conserves much more than just the protein-coding part of the genome, and this points at an important role for regulatory elements in trait evolution. Finally, genome sequencing using outbred or multiple individuals has provided a wealth of polymorphism data that gives information on population history, demography and marker evolution. 相似文献
4.
An explicit assumption of studies that employ a mitochondrial DNA (mtDNA) molecular clock is that mtDNA evolves independently of morphology. Here we report a very strong correlation between egg size divergence and cytochrome c oxidase-1 (CO1) amino acid sequence divergence among sister species of bivalve molluscs separated by the Central American Isthmus (i.e., \"geminate\" species). Analyses of the molecular data reveal that CO1 sequences likely did not diverge as a function of time or evolve in response to positive natural selection. Given that an excess of CO1 amino acid polymorphism exists within species (as expected if most mutations are only slightly deleterious), a third hypothesis is that reductions in effective population size could simultaneously increase the fixation rate of nearly neutral mtDNA polymorphisms and in some way also facilitate egg size evolution. The remarkable strength of the relationship between egg size and CO1 amino acid sequence demonstrates that, even in the absence of an obvious functional relationship or clock-like evolution, the amounts of molecular and morphological change can be tightly correlated, and therefore may reflect common processes. Accordingly, the assumption that the evolutionary divergence of molecules and morphology are independent must always be carefully examined. 相似文献
5.
6.
Andrew J. Eckert Andrew D. Bower Kathleen D. Jermstad Jill L. Wegrzyn Brian J. Knaus John V. Syring David B. Neale 《Molecular ecology》2013,22(22):5635-5650
Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne. An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long‐term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome‐wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and α. This implies that genome‐wide parameter estimates will need truly genome‐wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision. 相似文献
7.
The nearly neutral theory of molecular evolution states that the efficiency of natural selection depends on the effective population size. By using a wide range of multispecies data on nucleotide polymorphism, we have tried to ascertain whether there are any differences in the level of selective constraints of metabolic process genes between Mammals and Drosophila species. The results are consistent with a higher selective constraint in Drosophila than in Mammals, according to the expected under the nearly neutral model: purifying selection seems to be more efficient in species with a larger effective population size. 相似文献
8.
长期以来,自然选择理论与中性理论对生物分子进化中的环境适应机理存在着激烈争论。目前,在植物种群分子进化中对生境适应的研究中正面临着一些难题:中性突变是分子水平进化的唯一原因,自然选择发挥主要作用的适应性进化是否存在于分子水平,选择与中性两种学说两种机制完全不同,如何才能将两者联系和统一起来,部分学者利用建立各种模型来描述自然选择对分子标记位点以及连锁序列的直接作用,如生态位宽度变异假设等。本研究小组以新疆阜康荒漠植物为研究对象,通过对两种重要荒漠植物遗传多样性的研究,分析两种植物各亚种群不同生境的生态因子与其遗传变异的关系,讨论生态位宽度变异假设,揭示遗传变异的产生与维持。中性论者与选择论者都试图解释生物环境适应与分子变异之间的关系。中性论和选择论是反映进化的两个侧面,它们不是绝对的,可以相互转化。 相似文献
9.
Since the modern evolutionary synthesis was first proposed early in the twentieth century, attention has focused on assessing the relative contribution of mutation versus natural selection on protein evolution. Here we test a model that yields general quantitative predictions on rates of protein evolution by combining principles of individual energetics with Kimura's neutral theory. The model successfully predicts much of the heterogeneity in rates of protein evolution for diverse eukaryotes (i.e. fishes, amphibians, reptiles, birds, mammals) from different thermal environments. Data also show that the ratio of non-synonymous to synonymous nucleotide substitution is independent of body size, and thus presumably of effective population size. These findings indicate that rates of protein evolution are largely controlled by mutation rates, which in turn are strongly influenced by individual metabolic rate. 相似文献
10.
Lekha E. Manjunath Anumeha Singh Sarthak Sahoo Ashutosh Mishra Jinsha Padmarajan Chaithanya G. Basavaraju Sandeep M. Eswarappa 《The Journal of biological chemistry》2020,295(50):17009
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential. 相似文献
11.
The molecular clock does not tick at a uniform rate in all taxa but may be influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of "nearly neutral" mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution. 相似文献
12.
McDonald JH 《Molecular biology and evolution》2006,23(2):240-244
It has recently been claimed that certain amino acids have been increasing in frequency in all living organisms for most of the history of life on earth, while other amino acids have been decreasing in frequency. Three lines of evidence have been offered for this assertion, but each has a more plausible alternative interpretation. Here I show that unequal patterns of gains and losses for particular pairs of amino acids (such as more leucine --> phenylalanine than phenylalanine --> leucine substitutions in humans and chimpanzees since they split from a common ancestor) are consistent with a simple neutral model at equilibrium amino acid frequencies. Unequal numbers of gains and losses for particular amino acids (such as more gains than losses of cysteine) are shown by simulations to be consistent with a model of nearly neutral evolution. Unequal numbers of gains and losses for particular amino acids in human polymorphism data are shown by simulations to be explainable by the nearly neutral model as well. In a comparison of protein sequences from four strains of Escherichia coli, polarized by one outgroup strain of Salmonella, the disparity in number of gains and losses for particular amino acids is strong in terminal branches but weaker or nonexistent in internal branches, which is inconsistent with the universal trend model but as expected under the nearly neutral model. 相似文献
13.
It is often stated that patterns of nonsynonymous rate variation among mammalian lineages are more irregular than expected or overdispersed under the neutral model, whereas synonymous sites conform to the neutral model. Here we reexamined genome-wide patterns of the variance to mean ratio, or index of dispersion (R), of substitutions in proteins from human, mouse, and dog. Contrary to the prevailing notion, we found that the mean index of dispersion for nonsynonymous sites of mammalian proteins is not significantly different from 1. We propose that earlier analyses were biased because the data included disproportionately more protein hormones, which tend to be more dispersed than genes in other functional categories. Synonymous sites exhibit greater degree of dispersion than nonsynonymous sites, although similar to earlier estimates and potentially due to errors associated with correction for multiple hits. Overall, our analysis identifies strong genome-wide generation-time effect and natural selection as important determinants of among-lineage variation of protein evolutionary rates. Furthermore, patterns of lineage-specific selective constraint are consistent with the nearly neutral model of molecular evolution. 相似文献
14.
15.
alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients 总被引:3,自引:0,他引:3
Hein LK Bawden M Muller VJ Sillence D Hopwood JJ Brooks DA 《Journal of molecular biology》2004,338(3):453-462
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients. 相似文献
16.
Recent advances in studies of genetic variation at protein and DNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barley ( Hordeum spontaneum C. Koch.). On one side, adaptation was shown in statistic data, on the other side, the fact that a considerable part of genetic variation does exist within populations (subpopulations) under same ecological condition indicated its maintainability of neutral or near-neutral mutations in natural populations. The researches on adaptive populations of plants, especially on wild soybean ( Glycine soja Sieb. et Zucc.) mainly conducted in author's laboratory, have shown that the most part of molecular variation within and among populations can not be explained by selection particularly as far as the individual uniqueness was concerned. There are some data shown that adaptation may be caused by accumulation of a few near-neutral mutations. Recent publications on molecular mechanisms of morphological evolution has been received special attention to elucidate the discrepancy between molecular evolution and morphological adaptive evolution. A frame on the unified evolution theory has been built. Finally some related viewpoints of philosophy were discussed. 相似文献
17.
Tandem stop codons are extra stop codons hypothesized to be present downstream of genes to act as a backup in case of read-through
of the real stop codon. Although seemingly absent from Escherichia coli, recent studies have confirmed the presence of such codons in yeast. In this paper we will analyze the genomes of two ciliate
species—Paramecium tetraurelia and Tetrahymena thermophila—that reassign the stop codons TAA and TAG to glutamine, for the presence of tandem stop codons. We show that there are more
tandem stop codons downstream of both Paramecium and Tetrahymena genes than expected by chance given the base composition of the downstream regions. This excess of tandem stop codons is
larger in Tetrahymena and Paramecium than in yeast. We propose that this might be caused by a higher frequency of stop codon read-through in these species than
in yeast, possibly because of a leaky termination machinery resulting from stop codon reassignment. 相似文献
18.
Michael R. Dietrich 《Biology & philosophy》1996,11(3):339-356
In the 1960s molecular population geneticists used Monte Carlo experiments to evaluate particular diffusion equation models. In this paper I examine the nature of this comparative evaluation and argue for three claims: first, Monte Carlo experiments are genuine experiments: second, Monte Carlo experiments can provide an important meansfor evaluating the adequacy of highly idealized theoretical models; and, third, the evaluation of the computational adequacy of a diffusion model with Monte Carlo experiments is significantlydifferent from the evaluation of the emperical adequacy of the same diffusion model. 相似文献
19.
Schaper S Johnston IG Louis AA 《Proceedings. Biological sciences / The Royal Society》2012,279(1734):1777-1783
In evolution, the effects of a single deleterious mutation can sometimes be compensated for by a second mutation which recovers the original phenotype. Such epistatic interactions have implications for the structure of genome space--namely, that networks of genomes encoding the same phenotype may not be connected by single mutational moves. We use the folding of RNA sequences into secondary structures as a model genotype-phenotype map and explore the neutral spaces corresponding to networks of genotypes with the same phenotype. In most of these networks, we find that it is not possible to connect all genotypes to one another by single point mutations. Instead, a network for a phenotypic structure with n bonds typically fragments into at least 2(n) neutral components, often of similar size. While components of the same network generate the same phenotype, they show important variations in their properties, most strikingly in their evolvability and mutational robustness. This heterogeneity implies contingency in the evolutionary process. 相似文献
20.
Nicolas Rodrigue Thibault Latrille Nicolas Lartillot 《Molecular biology and evolution》2021,38(3):1199
In recent years, codon substitution models based on the mutation–selection principle have been extended for the purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date have either focused on detecting global signals of adaptive regimes—across the entire gene—or on contexts where experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-heterogeneous mutation–selection framework for site-specific detection of adaptive substitution regimes given a protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods. However, more study is required to assess the impact of potential model violations on the method, and gain a greater empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program. 相似文献