首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeIn this paper, we propose a novel method for human body composition measurement, especially for the bone mineral density (BMD) measurement. The proposed method, using the absorption and differential phase information retrieved from X-ray grating-based interferometer (XGBI) to measure the BMD, has potential to replace dual-energy X-ray absorptiometry (DEXA), which is currently widely used for body composition measurement.MethodsThe DEXA method employs two absorption images acquired at two different X-ray spectra (high energy and low energy) to calculate the human body composition. In this paper, a new method to calculate BMD using a single X-ray measurement is proposed. XGBI is a relatively new X-ray technique that provides absorption, phase and scattering information simultaneously using a single X-ray spectrum. With the absorption and differential phase information retrieved from XGBI, BMD can be measured using only one single X-ray spectrum. Numerical simulations are performed with a body phantom of bone (Cortical, ICRU-44) surrounded by soft tissue (Soft, ICRU-44). BMD is calculated with both the DEXA method and the proposed method.ResultsResults show that BMD can be measured accurately with the proposed method; moreover, better signal-to-noise ratio (SNR) is obtained compared to DEXA.ConclusionWith the proposed method, BMD can be measured with XGBI setup. Further, the proposed method can be realized using current X-ray phase-contrast imaging (XPCI) apparatus without any hardware modification, suggesting that this technique can be a promising supplementary function to current XPCI equipment.  相似文献   

2.
Gotfredsen, Anders, Lene Bæksgaard, and Jannik Hilsted.Body composition analysis by DEXA by using dynamically changing samarium filtration. J. Appl. Physiol.82(4): 1200-1209, 1997.Dual-energy X-ray absorptiometry (DEXA)has a high accuracy for body composition analysis but is influenced bybeam hardening and other error sources in the extremes of measurement.To compensate for beam hardening, the Norland XR-36 introduces adynamically changing samarium filtration system, which depends on thecurrent-absorber thickness. With this system we found a good agreement(r = 0.99) between reference andmeasured amounts of tissue or fat percentages in a plastic phantom andin smaller (~0.5-4 kg) and larger (~5-20 kg) piles oftissue (ox muscle and lard). Scans of six healthy volunteers coveredwith combinations of beef and lard (~5-15 kg) showed a goodagreement (r = 0.99) between referenceand DEXA values of added soft tissue mass and fat percentage. Weconclude that the DEXA method (and, in particular, the Norland XR-36using dynamic filtration) has a high accuracy for body compositionanalysis. It has a potential for gaining status as a reference methodin the future and may presently be used as a supplement to thetraditional methods for body composition analysis.

  相似文献   

3.
Validated methods of determining murine body composition are required for studies of obesity in mice. Dual-energy X-ray absorptiometry (DEXA) provides a noninvasive approach to assess body fat and lean tissue contents. Similar to DEXA analyses in other species, body fat measurements in mice show acceptable precision but suffer from poor accuracy. Because fat and lean tissues each contain various components, these inaccuracies likely result from selection of inappropriate calibration standards. Analysis of solvents showed that the PIXImus2 DEXA gave results consistent with theoretical calculations. Male mice weighing 26-60 g and having body fat percentages ranging from 3 to 49% were analyzed by both PIXImus2 DEXA and chemical carcass analysis. DEXA overestimated mouse fat content by an average of 3.3 g, and algorithms were generated to calculate body fat from both measured body fat values and the measured ratio of high- to low-energy X-ray attenuations. With calibration to mouse body fat content measured by carcass analysis, the PIXImus2 DEXA gives accurate body composition values in mice.  相似文献   

4.
Breast cancer is the most common cancer among women in industrialized countries. At present, X-ray mammography is the gold standard for breast imaging, but has limitations, especially when dense breasts are imaged, as typically occurs in young women. Optical imaging can non-invasively provide information on tissue composition, structure and physiology that can be beneficially exploited for breast lesion detection and identification. In the last few decades optical breast imaging has been investigated, using different geometries (projection imaging and tomography) and measurement techniques (continuous wave, frequency resolved and time resolved approaches). Also, data analysis and display varies significantly, ranging from intensity images to maps of the optical properties (absorption and scattering), tissue composition, and physiological parameters (typically blood volume and oxygenation). This paper outlines the historical evolution of optical imaging and spectroscopy of the breast, highlighting potentialities and limitations, and presents an overview of the main applications and perspectives of the field.  相似文献   

5.
Dual-energy X-ray absorptiometry (DEXA) is reported to be inferior to computed tomography (CT) to measure changes in appendicular soft tissue composition. We compared CT- and DEXA-measured thigh muscle and fat mass to evaluate the random and systematic discrepancies between these two methods. Thigh skeletal muscle area (single-slice CT) was suboptimally (r(2) = 0.74, P < 0.0001) related to DEXA-measured thigh fat-free mass (FFM). In contrast, thigh muscle and adipose tissue volumes (multislice CT) were highly related to DEXA-measured thigh FFM and fat (both r(2) = 0.96, P < 0.0001). DEXA-measured leg fat was significantly less than multislice-CT-measured leg adipose tissue volume, whereas multislice-CT-measured leg muscle mass was less (P < 0.0001) than DEXA-measured leg FFM. The systematic discrepancies between the two approaches were consistent with the 10-15% nonfat components of adipose tissue. In conclusion, CT and DEXA measures of appendicular soft tissue are highly related. Systematic differences between DEXA and CT likely relate to the underlying principles of the techniques.  相似文献   

6.
Although there is growing interest in studying muscle distribution, regional skeletal muscle (SM) mass measurement methods remain limited. The aim of the present study was to develop a new dual-energy X-ray absorptiometry (DEXA) model for estimating regional adipose tissue-free skeletal muscle mass (AT-free SM). Relationships were derived from Reference Man data between tissue-system- level components (i.e., AT-free SM, AT, skeleton, and skin) and molecular-level components including fat-free soft tissue, fat, and bone mineral. The proposed DEXA-SM model was evaluated by multiscan computerized axial tomography (CT). Twenty-seven male subjects [age, 36 +/- 12 (SD) yr; body mass, 73.2 +/- 12.4 kg; 20 were healthy, and 7 had acquired immunodeficiency syndrome] completed DEXA and CT studies. Identical landmarks for DEXA and CT measurements were selected in three regions, including calves, thighs, and forearms. There was a strong correlation for AT-free SM estimates between the new DEXA and CT methods (e.g., sum of three regions, r = 0.86, P < 0.001). Regional AT-free SM measured in the 27 subjects by DEXA and CT, respectively, were 3.44 +/- 0.60 and 3. 47 +/- 0.55 kg (difference 0.9%, P > 0.05) for calves, 10.49 +/- 1. 77 and 10.05 +/- 1.79 kg (difference 4.4%, P < 0.05) for thighs, 1. 36 +/- 0.49 and 1.20 +/- 0.41 kg (difference 13.3%, P < 0.01) for forearms, and 15.29 +/- 2.33 and 14.72 +/- 2.33 kg (difference 3.9%, P < 0.05) for the sum all three regions. Although the suggested DEXA-SM model needs minor refinements, this is a promising in vivo approach for measurement of regional SM, because DEXA is widely available, relatively inexpensive, and radiation exposure is low.  相似文献   

7.
The aim of the study was to examine the accuracy of fan-beam dual-energy X-ray absorptiometry (DEXA) for measuring total body fat-free mass (FFM) and leg muscle mass (MM) in elderly persons. Participants were 60 men and women aged 70-79 yr and with a body mass index of 17.5-39.8 kg/m(2). FFM and MM at four leg regions were measured by using DEXA (Hologic 4500A, v8.21). A four-compartment body composition model (4C) and multislice computed tomography (CT) of the legs were used as the criterion methods for FFM and MM, respectively. FFM by DEXA was positively associated with FFM by 4C (R(2) = 0.98, SE of estimate = 1.6 kg). FFM by DEXA was higher [53.5 +/- 12.0 (SD) kg] than FFM by 4C (51.6 +/- 11.9 kg; P < 0.001). No association was observed between the difference and the mean of the two methods. MM by DEXA was positively associated with CT at all four leg regions (R(2) = 0.86-0.96). MM by DEXA was higher than by CT in three regions. The results of this study suggest that fan-beam DEXA offers considerable promise for the measurement of total body FFM and leg MM in elderly persons.  相似文献   

8.
Dual-energy X-ray absorptiometry (DEXA) provides a measure of lean soft tissue (LST). LST hydration, often assumed to be constant, is relevant to several aspects of DEXA body composition estimates. The aims of this study were to develop a theoretical model of LST total body water (TBW) content and to examine hydration effects with empirically derived model coefficients and then to experimentally test the model's prediction that, in healthy adults, LST hydration is not constant but varies as a function of extra- and intracellular water distribution (E/I). The initial phase involved TBW/LST model development and application with empirically derived model coefficients. Model predictions were then tested in a cross-sectional study of 215 healthy adults. LST was measured by DEXA, extracellular water (ECW) by NaBr dilution, intracellular water (ICW) by whole body (40)K counting, and TBW by (2)H(2)O dilution. TBW estimates, calculated as ECW + ICW, were highly correlated with (r = 0.97, SEE = 2.1 kg, P < 0.001) and showed no significant bias compared with TBW measured by (2)H(2)O. Model-predicted TBW/LST was almost identical to experimentally derived values (means +/- SD) in the total group (0.767 vs. 0.764 +/- 0.028). LST hydration was significantly correlated with E/I (total group, r = 0.30, SEE = 0.027, P < 0.001). Although E/I increased with age (men, r = 0.48; women, r = 0.37; both P < 0.001), the association between TBW/LST and age was nonsignificant. Hydration of the DEXA-derived LST compartment is thus not constant but varies predictably with ECW and ICW distribution. This observation has implications for the accuracy of body fat measurements by DEXA and the use of TBW as a means of checking DEXA system calibration.  相似文献   

9.
An increase in femoral and tibio/fibular bone mass following periosteal membrane stimulation by Moloney sarcoma virus inoculation into thigh muscles of mice was measured in situ on formalin fixed excised hind limbs using a Hologic 4500A Fan Beam X-ray bone densitometer adapted for small bone samples. These results were verified by measurements of constant dry bone mass of the same bones liberated from soft limb tissues by NaOH hydrolysis. There was no consistent data correlation found between the DEXA scan and dry bone mass evaluations. It is concluded that the sensitivity of the DEXA measurement is unsuitable when assessing very small bone samples, weighing merely 20-30 mg.  相似文献   

10.
This study compared body composition by dual-energy X-ray absorptiometry (DEXA; Lunar DPX-L) with that via a four-compartment (4C; water, bone mineral mass, fat, and residual) model. Relative body fat was determined for 152 healthy adults [30.0 +/- 11.1 (SD) yr; 75.10 +/- 14.88 kg; 176.3 +/- 8.7 cm] aged from 18 to 59 yr. The 4C approach [20.7% body fat (%BF)] resulted in a significantly (P < 0.001) higher mean %BF compared with DEXA (18.9% BF), with intraindividual variations ranging from -2.6 to 7.3% BF. Linear regression and a Bland and Altman plot demonstrated the tendency for DEXA to progressively underestimate the %BF of leaner individuals compared with the criterion 4C model (4C %BF = 0.862 x DEXA %BF + 4.417; r(2) = 0.952, standard error of estimate = 1.6% BF). This bias was not attributable to variations in fat-free mass hydration but may have been due to beam-hardening errors that resulted from differences in anterior-posterior tissue thickness.  相似文献   

11.
PurposeConventional x-ray spectrum estimation methods from transmission measurement often lead to inaccurate results when extensive x-ray scatter is present in the measured projection. This study aims to apply the weighted L1-norm scatter correction algorithm in spectrum estimation for reducing residual differences between the estimated and true spectrum.MethodThe scatter correction algorithm is based on a simple radiographic scattering model where the intensity of scattered x-ray is directly estimated from a transmission measurement. Then, the scatter-corrected measurement is used for the spectrum estimation method that consists of deciding the weights of predefined spectra and representing the spectrum as a linear combination of the predefined spectra with the weights. The performances of the estimation method combined with scatter correction are evaluated on both simulated and experimental data.ResultsThe results show that the estimated spectra using the scatter-corrected projection nearly match the true spectra. The normalized-root-mean-square-error and the mean energy difference between the estimated spectra and corresponding true spectra are reduced from 5.8% and 1.33 keV without the scatter correction to 3.2% and 0.73 keV with the scatter correction for both simulation and experimental data, respectively.ConclusionsThe proposed method is more accurate for the acquisition of x-ray spectrum than the estimation method without scatter correction and the spectrum can be successfully estimated even the materials of the filters and their thicknesses are unknown. The proposed method has the potential to be used in several diagnostic x-ray imaging applications.  相似文献   

12.
Clinical studies have demonstrated a strong relationship between visceral fat content and metabolic diseases, such as type 2 diabetes and liver steatosis. Obese mouse models are an excellent tool to study metabolic diseases; however, there are limited methods for the noninvasive measurement of fat distribution in mice. Although micromagnetic resonance imaging and microcomputed tomography are the "gold standards" in the measurement of fat distribution, more economical and accessible methods are required. Dual energy X-ray absorptiometry (DEXA) is an effective method in characterizing fat content; however, it cannot discriminate between visceral and subcutaneous fat depots. We demonstrate that an evaluation of abdominal fat content measured by DEXA through the selection of one localized abdominal area strongly correlates with visceral fat content in C57BL/6J mice. We found that DEXA is able to measure fat pad volume ex vivo with high accuracy; however, the measurement of visceral fat in vivo shows an overestimation caused by subcutaneous tissue interference. The overestimation is almost constant for a wide range of values, and thus it is possible to correct the data for a more accurate estimation of visceral fat content. We demonstrate the utility of this technique in characterizing phenotypes of several obese mouse models (ob/ob, db/db, MC4R-KO, and DIO) and evaluating the effect of treatments on visceral fat content in longitudinal studies. Additionally, we also establish abdominal obesity as a potential biomarker for metabolic abnormalities (liver fat accumulation, insulin resistance/diabetes) in mice, similar to that described in humans.  相似文献   

13.
Objective: Dual‐energy X‐ray absorptiometry (DXA) is often cited as a criterion method for body composition measurements. We have previously shown that a new DXA software version (Hologic Discovery V12.1) will affect whole‐body bone mineral results for subjects weighing <40 kg. We wished to reanalyze pediatric whole‐body scans in order to assess the impact of the new software on pediatric soft‐tissue body composition estimates. Methods and Procedures: We reanalyzed 1,384 pediatric scans (for ages 1.7–17.2 years) using Hologic software V12.1, previously analyzed using V11.2. Regression analysis and ANCOVA were used to compare body fat (total body fat (TBF), percentage fat (%BF)), and non‐bone lean body mass (LBM) for the two versions, adjusting for gender, age and weight. Results: Software V12.1 yielded values that were higher for TBF, lower for LBM, and unchanged for DXA‐derived weight in subjects weighing <40 kg. Body composition values for younger, smaller subjects were most affected, and girls were more affected than boys. Using the new software, 14% of the girls and 10% of the boys were reclassified from the “normal” %BF range to “at risk of obesity,” while 7 and 5%, respectively, were reclassified as obese. Discussion: Hologic's newest DXA software has a significant effect on soft‐tissue results for children weighing <40 kg. The effect is greater for girls than boys. Comparison of TBF estimates with previous studies that use older DXA instruments and software should be done with caution. DXA has not yet achieved sufficient reliability to be considered a “gold standard” for body composition assessment in pediatric studies.  相似文献   

14.
Measurement of fat mass using DEXA: a validation study in elderly adults.   总被引:4,自引:0,他引:4  
The accuracy of total body fat mass and leg fat mass measurements by fan-beam dual-energy X-ray absorptiometry (DEXA) was assessed in 60 healthy elderly subjects (aged 70-79 yr). Total fat and leg fat mass at four leg regions (total leg, thigh, midthigh, and calf) were measured with the QDR 4500A (Hologic, Waltham, MA). The four-compartment model and multislice computed tomography scans were selected as criterion methods for total fat and leg fat mass, respectively. Total fat mass from DEXA was positively associated with fat mass from the four-compartment model with a standard error of the estimate ranging from 1.4 to 1.6 kg. DEXA fan-beam tended to overestimate fat mass for total leg and total thigh fat mass, whereas only marginal differences in fat mass measurements at the midthigh and calf were demonstrated (相似文献   

15.
We describe a novel method of measuring the mass properties of the limbs, specifically legs. We use the method to obtain the mass and centre of mass of the legs which enables us to calculate the leg joint moments from measurements of ground reaction forces using force plates. The data are obtained by using a 3D whole body scanner to obtain a data set representing the surface of both legs. The bones are significantly denser than the soft tissue so their mass is calculated. Textbook values for the densities of bone and soft tissue are used. The actual bones are approximated by stretching appropriate bone shapes to fit the X-ray of the subject. Numerical integration is then used to obtain the mass and centre of mass of the limb. The system is fast and reliable and allows an individual's mass properties to be measured rather than relying upon population surveys which may be biased, particularly, when the subject is atypical by being disabled. Paraplegics can be measured in the scanner using a modified Oswestry standing frame. When compared with a water displacement method, for 10 legs the errors in the total leg volume using this method are less than 1% and in the location of the centre of mass are less than 4%.  相似文献   

16.
Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.  相似文献   

17.
《Endocrine practice》2013,19(4):587-595
ObjectiveTo review how visceral and hepatic fat are measured in clinical practice and clinical research.MethodsWe examine different methods employed to assess visceral and hepatic fat in the literature.ResultsFat in the human body is located in 2 main compartments: subcutaneous and visceral, which also includes liver fat. Visceral and liver fats are associated with the metabolic complications of obesity like hypertension, diabetes, and atherosclerosis. Therefore, there is a need to detect those fats early in life before the development of cardiometabolic syndrome (CMS). Many modalities have been proposed to measure visceral and liver fat. Indirect measurements can be done through waist circumference (WC), dual-energy X-ray absorptiometry (DEXA), ultrasound, and bioelectric impedance, whereas direct methods include computed tomography (CT) and magnetic resonance imaging (MRI). An ideal measurement method should be noninvasive, reliable, suitable for all body sizes, widely available, cost and time effective, show low variability, and have no or limited radiation exposure.ConclusionMeasuring visceral and liver fat is not a straightforward procedure in clinical practice or research; several variables may affect measure accuracy and validity. (Endocr Pract. 2013;19:587-595)  相似文献   

18.
In order to determine the age above which the FORBES equation for calculating percent body fat (%BF) in the elderly is to be applied, 9 persons in their 60s, 7 persons in their 70s and 3 persons older than 80 took part in this study. %BF was measured using dual-energy X-ray absorptiometry (DEXA). In each subject, body density was measured using densitometry. %BF was then calculated by substituting body density for the Siri or FORBES equation. Based on the value of %BF measured with DEXA, the calculated %BF was criticized for each decade of subjects. It was concluded that the Siri equation should be applied to those who are younger than 80 and that the FORBES equation should be applied to those who are 80 and older.  相似文献   

19.
Dual-energy X-ray absorption (DEXA) is commonly used to measure bone mineral density (BMD), bone mineral content (BMC), and body composition data (fat mass and lean mass) for phenotype assessment in mice. We were interested in the long-term development of BMD, BMC, lean mass, and fat mass of mice, also taking into account sex and genetic background. The dataset was used to analyze correlations among the different parameters. We analyzed males and females from inbred strains C3HeB/FeJ and C57BL/6J, starting from 42 until 528 days of age. To evaluate the effect of husbandry systems, we repeated a part of the study in a second facility with a different caging system. We also assessed different DEXA settings and repeatability of the scans. The results of this study were used to draw conclusions for the use of DEXA analysis in mouse phenotyping approaches.  相似文献   

20.
X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号