首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

2.
BackgroundCurrently, CBCT system is an indispensable component of radiation therapy units. Because of that, it is important in treatment planning and diagnosis. CBCT is also an crucial tool for patient positioning and verification in image-guided radiation therapy (IGRT). Therefore, it is critical to investigate the patient organ doses arising from CBCT imaging. The purpose of this study is to evaluate patient organ doses and effective dose to patients from three different protocols of Elekta Synergy XVI system for kV CBCT imaging examinations in image guided radiation therapy.Materials and methodsOrgan dose measurements were done with thermoluminescent dosimeters in Alderson RA NDO male phantom for head & neck (H&N), chest and pelvis protocols of the Elekta Synergy XVI kV CBCT system. From the measured organ dose, effective dose to patients were calculated according to the International Commission on Radiological Protection 103 report recommendations.ResultsFor H&N, chest and pelvis scans, the organ doses were in the range of 0.03–3.43 mGy, 6.04–22.94 mGy and 2.5–25.28 mGy, respectively. The calculated effective doses were 0.25 mSv, 5.56 mSv and 4.72 mSv, respectively.ConclusionThe obtained results were consistent with the most published studies in the literature. Although the doses to patient organs from the kV CBCT system were relatively low when compared with the prescribed treatment dose, the amount of delivered dose should be monitored and recorded carefully in order to avoid secondary cancer risk, especially in pediatric examinations.  相似文献   

3.

Cone-beam computed tomography (CBCT) is widely used for pre-treatment verification and patient setup in image-guided radiation therapy (IGRT). CBCT imaging is employed daily and several times per patient, resulting in potentially high cumulative imaging doses to healthy tissues that surround exposed target organs. Computed tomography dose index (CTDI) is the parameter used by CBCT equipment as indication of the radiation output to patients. This study aimed to increase the knowledge on the relation between CBCT organ doses and weighted CTDI (CTDIW) for a thorax scanning protocol. A CBCT system was modelled using the Monte Carlo (MC) radiation transport program MCNPX2.7.0. Simulation results were validated against half-value layer (HVL), axial beam profile, patient skin dose (PSD) and CTDI measurements. For organ dose calculations, a male voxel phantom (“Golem”) was implemented with the CBCT scanner computational model. After a successful MC model validation with measurements, a systematic comparison was performed between organ doses (and their distribution) and CTDI dosimetry concepts [CTDIW and cumulative dose quantities f100(150) and \({\text{CTD}}{{\text{I}}_\infty }\)]. The results obtained show that CBCT organ doses vary between 1.2 ± 0.1 mGy and 3.3 ± 0.2 mGy for organs located within the primary beam. It was also verified that CTDIW allows prediction of absorbed doses to tissues at distances of about 5 cm from the isocentre of the CBCT system, whereas f100(150) allows prediction of organ doses at distances of about 10 cm from the isocentre, independently from its location. This study demonstrates that these dosimetric concepts are suitable methods that easily allow a good approximation of the additional CBCT imaging doses during a typical lung cancer IGRT treatment.

  相似文献   

4.
PurposeTo estimate organ dose and effective dose for patients for cardiac CT as applied in an international multicenter study (CORE320) with a 320-Detector row CT scanner using Monte Carlo (MC) simulations and voxelized phantoms. The effect of positioning of the arms, off-centering the patient and heart rate on patient dose was analyzed.MethodsA MC code was tailored to simulate the geometry and characteristics of the CT scanner. The phantoms representing the adult reference male and female were implemented according to ICRP 110. Effective dose and organ doses were obtained for CT acquisition protocols for calcium scoring, coronary angiography and myocardial perfusion.ResultsFor low heart rate, the normalized effective dose (E) for cardiac CT was higher for female (5.6 mSv/100 mAs) compared to male (2.2 mSv/100 mAs) due to the contribution of female breast tissue. Averaged E for female and male was 11.3 mSv for the comprehensive cardiac protocol consisting of calcium scoring (1.9 mSv); coronary angiography including rest cardiac perfusion (5.1 mSv) and stress cardiac perfusion (4.3 mSv). These values almost doubled at higher heart rates (20.1 mSv). Excluding the arms increased effective dose by 6–8%, centering the patient showed no significant effect. The k-factor (0.028 mSv/mGy.cm) derived from this study leads to effective doses up to 2–3 times higher than the values obtained using now outdated methodologies.ConclusionMC modeling of cardiac CT examinations on realistic voxelized phantoms allowed us to assess patient doses accurately and we derived k-factors that are well above those published previously.  相似文献   

5.
PurposeThe aim of this work was to evaluate the dosimetric impact of high-resolution thorax CT during COVID-19 outbreak in the University Hospital of Parma. In two months we have performed a huge number of thorax CT scans collecting effective and equivalent organ doses and evaluating also the lifetime attributable risk (LAR) of lung and other major cancers.Materials and MethodFrom February 24th to April 28th, 3224 high-resolution thorax CT were acquired. For all patients we have examined the volumetric computed tomography dose index (CTDIvol), the dose length product (DLP), the size-specific dose estimate (SSDE) and effective dose (E103) using a dose tracking software (Radimetrics Bayer HealthCare). From the equivalent dose to organs for each patient, LAR for lung and major cancers were estimated following the method proposed in BEIR VII which considers age and sex differences.ResultsStudy population included 3224 patients, 1843 male and 1381 female, with an average age of 67 years. The average CTDIvol, SSDE and DLP, and E103 were 6.8 mGy, 8.7 mGy, 239 mGy·cm and 4.4 mSv respectively. The average LAR of all solid cancers was 2.1 cases per 10,000 patients, while the average LAR of leukemia was 0.2 cases per 10,000 patients. For both male and female the organ with a major cancer risk was lung.ConclusionsDespite the impressive increment in thoracic CT examinations due to COVID-19 outbreak, the high resolution low dose protocol used in our hospital guaranteed low doses and very low risk estimation in terms of LAR.  相似文献   

6.
PurposeTo compare patient radiation doses in cone beam computed tomography (CBCT) of two mobile systems used for navigation-assisted mini-invasive orthopedic surgery: O-arm®O2 and Surgivisio®.MethodsThe study focused on imaging of the spine. Thermoluminescent dosimeters were used to measure organs and effective doses (ED) during CBCT. An ionization-chamber and a solid-state sensor were used to measure the incident air-kerma (Ki) at the center of the CBCT field-of-view and Ki during 2D-imaging, respectively. The PCXMC software was used to calculate patient ED in 2D and CBCT configurations. The image quality in CBCT was evaluated with the CATPHAN phantom.ResultsThe experimental ED estimate for the low-dose 3D-modes was 2.41 and 0.35 mSv with O-arm®O2 (Low Dose 3D-small-abdomen) and Surgivisio® (3DSU-91 images), respectively. PCXMC results were consistent: 1.54 and 0.30 mSv. Organ doses were 5 to 12 times lower with Surgivisio®. Ki at patient skin were comparable on lateral 2D-imaging (0.5 mGy), but lower with O-arm®O2 on anteroposterior (0.3 versus 0.9 mGy). Both systems show poor low contrast resolution and similar high contrast spatial resolution (7 line-pairs/cm).ConclusionsThis study is the first to evaluate patient ED and organ doses with Surgivisio®. A significant difference in organs doses was observed between the CBCT systems. The study demonstrates that Surgivisio® used on spine delivers approximately five to six times less patient ED, compared to O-arm®O2, in low dose 3D-modes. Doses in 2D-mode preceding CBCT were higher with Surgivisio®, but negligible compared to CBCT doses under the experimental conditions tested.  相似文献   

7.
PurposeTo calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners.MethodsThe radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices.ResultsFor orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32 mSv for a normal resolution operation mode in Promax 3D Max, 0.27 mSv in VGi-evo and 1.18 mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28 mSv while for NewTom 5G the ED was 0.31 and 0.22 mSv for monolateral and bilateral imaging respectively.ConclusionsTwo clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar.  相似文献   

8.
Diagnostic Reference Levels provide a method of ensuring that patient doses in medical procedures are kept at acceptable levels. Their application in dentistry can provide an indication of current dose levels and can assist in potentially significant dose reduction in Ireland given the number of patients screened annually.This study involved retrospective analyses of entrance surface dose and dose-width-product measurements obtained in Irish Dental Practices for both Intra-Oral and Panoramic units respectively, followed by comparisons with Monte-Carlo generated computer models of these procedures. Analysis was performed on data from 33 Intra-Oral units for an Adult Mandibular Molar entrance surface dose, 198 readings for a proposed mGy/mAs reference level and 50 Panoramic machines for a dose-width product investigation.The third quartile value of the entrance surface dose for a standard Adult Mandibular Molar Intra-Oral radiograph is (2.40 ± 0.92)mGy, compared to a computer-modelled value of 2.60 mGy. The third quartile mGy/mAs value for Intra-Oral procedures is (1.03 ± 0.38)mGy/mAs, compared to a computer-modelled value of 0.75 mGy/mAs. The third quartile dose width product for an Adult Panoramic radiograph is (59.89 ± 20.97)mGymm, compared to a computer-modeled value of 62.40 mGymm.It is proposed to introduce Diagnostic Reference Levels of 2.4 mGy for an Adult Mandibular Molar Intra-Oral radiograph and 60 mGymm for an Adult Panoramic radiograph. The use of a new reference quantity in Intra-Oral radiology is also suggested. This has a value of 1 mGy/mAs and may be introduced alongside established procedures. These levels can be taken as guides to acceptable doses, but it should be noted that further reductions are practical under ALARA principles.  相似文献   

9.
PurposeTo determine fetal doses in different stages of pregnancy in three common computed tomography (CT) examinations: pulmonary CT angiography, abdomino-pelvic and trauma scan with Monte Carlo (MC) simulations.MethodsAn adult female anthropomorphic phantom was scanned with a 64-slice CT using pulmonary angiography, abdomino-pelvic and trauma CT scan protocols. Three different sized gelatin boluses placed on the phantom’s abdomen simulated different stages of pregnancy. Intrauterine dose was used as a surrogate to a dose absorbed to the fetus. MC simulations were performed to estimate uterine doses. The simulation dose levels were calibrated with volumetric CT dose index (CTDIvol) measurements and MC simulations in a cylindrical CTDI body phantom and compared with ten point doses measured with metal-oxide-semiconductor field-effect-transistor dosimeters. Intrauterine volumes and uterine walls were segmented and the respective dose volume histograms were calculated.ResultsThe mean intrauterine doses in different stages of pregnancy varied from 0.04 to 1.04 mGy, from 4.8 to 5.8 mGy, and from 9.8 to 12.6 mGy in the CT scans for pulmonary angiography, abdomino-pelvic and trauma CT scans, respectively. MC simulations showed good correlation with the MOSFET measurement at the measured locations.ConclusionsThe three studied examinations provided highly varying fetal doses increasing from sub-mGy level in pulmonary CT angiography to notably higher levels in abdomino-pelvic and trauma scans where the fetus is in the primary exposure range. Volumetric dose distribution offered by MC simulations in an appropriate anthropomorphic phantom provides a comprehensive dose assessment when applied in adjunct to point-dose measurements.  相似文献   

10.
ObjectiveTo evaluate the effect of cone-beam computed tomography (CBCT) image acquisition protocols on image quality, lesion detection, delineation, and patient dose.Methods100-patients and a CTDI phantom combined with an electron density phantom were examined using four different CBCT-image acquisition protocols during image-guided transarterial chemoembolization (TACE). Protocol-1 (time: 6 s, tube rotation: 360°), protocol-2 (5 s, 300°), protocol-3 (4 s, 240°) and protocol-4 (3 s, 180°) were used. The protocols were first investigated using a phantom. The protocols that were found to be clinically appropriate in terms of image quality and radiation dose were then assessed on patients. A higher radiation dose and/or a poor image quality were inappropriate for the patient imaging. Patient dose (patient-entrance dose and dose-area product), image quality (Hounsfield Unit, noise, signal-to-noise ratio and contrast-to-noise ratio), and lesion delineation (tumor-liver contrast) were assessed and compared using appropriate statistical tests. Lesion detectability, sensitivity, and predictive values were estimated for CBCT-image data using pre-treatment patient magnetic resonance imaging.ResultsThe estimated patient dose showed no statistical significance (p > 0.05) between protocols-2 and -3; the assessed image quality between these protocols manifested insignificant difference (p > 0.05). Two other phantom protocols were not considered for patient imaging due to significantly higher dose (protocols-1) and poor image quality (protocol-4). Lesion delineation and detection were insignificant (p > 0.05) between protocols-2 and -3. Lesion sensitivities generated were 81–89% (protocol-2) and 81–85% (protocol-3) for different lesion types.ConclusionData acquisition using protocols-2 and -3 provided good image quality, lesion detection and delineation with acceptable patient dose during CBCT-imaging mainly due to similar frame numbers acquired.  相似文献   

11.

The objective of this work was to assess absorbed doses in organs and tissues of a rabbit, following computed tomography (CT) examinations, using a dedicated 3D voxel model. Absorbed doses in relevant organs were calculated using the MCNP5 Monte Carlo software. Calculations were perfomed for two standard CT protocols, using tube voltages of 110 kVp and 130 kVp. Absorbed doses were calculated in 11 organs and tissues, i.e., skin, bones, brain, muscles, heart, lungs, liver, spleen, kidney, testicles, and fat tissue. The doses ranged from 15.3 to 28.3 mGy, and from 40.2 to 74.3 mGy, in the two investigated protocols. The organs that received the highest dose were bones and kidneys. In contrast, brain and spleen were organs that received the smallest doses. Doses in organs which are stretched along the body did not change significantly with distance. On the other hand, doses in organs which are localized in the body showed maximums and minimums. Using the voxel model, it is possible to calculate the dose distribution in the rabbit’s body after CT scans, and study the potential biological effects of CT doses in certain organs. The voxel model presented in this work can be used to calculated doses in all radiation experiments in which rabbits are used as experimental animals.

  相似文献   

12.
This study investigated the biological effects and adaptive responses induced by single and repeated in vivo computed tomography (CT) scans. We postulated that, through the induction of low-level oxidative stress, repeated low-dose CT scans (20 mGy, 2 days/week, 10 weeks) could protect mice (C57BL/6) from acute effects of high-dose radiation (1 Gy, 2 Gy). The micronucleated reticulocyte (MN-RET) count increased linearly after exposure to single CT scans of doses ranging from 20 to 80 mGy (P = 0.033). Ten weeks of repeated CT scans (total dose 400 mGy) produced a slight reduction in spontaneous MN-RET levels relative to levels in sham CT-scanned mice (P = 0.04). Decreases of nearly 10% in γ-H2AX fluorescence levels were observed in the repeated CT-scanned mice after an in vitro challenge dose of 1 Gy (P = 0.017) and 2 Gy (P = 0.026). Spontaneous apoptosis levels (caspase 3 and 7 activation) were also significantly lower in the repeated CT-scanned mice than the sham CT-scanned mice (P < 0.01). In contrast, mice receiving only a single CT scan showed a 19% elevation in apoptosis (P < 0.02) and a 10% increase in γ-H2AX fluorescence levels after a 2-Gy challenge (P < 0.05) relative to sham CT controls. Overall, repeated CT scans seemed to confer resistance to larger doses in mice, whereas mice exposed to single CT scans exhibited transient genotoxicity, enhanced apoptosis, and characteristics of radiation sensitization.  相似文献   

13.
14.
PurposeThe diagnostic reference level (DRL) has been established to optimize the diagnostic methods and reduce radiation dose during radiographic examinations. The aim of this study was to present a completely new solution based on Cloud-Fog software architecture for automatic establishment of the DRL values during dental cone-beam computed tomography (CBCT) according to digital imaging and communications in medicine (DICOM) structured reports.Methods and MaterialsA Cloud-Fog software architecture was used for automatic data handling. This architecture used the DICOM structured reports as a source for extracting the required information by fog devices in the imaging center. These devices transferred the derived information to the cloud server. The cloud server calculated the value of indication-based DRL in dental CBCT imaging based upon the parameters and adequate quantities of the absorbed dose. The feedback of DRL value was continuously announced to the imaging centers in 6 phases. In each phase, the level of the dose was optimized in imaging centers.ResultsThe DRL value was established for 5-specific indications, including third molar teeth (511 mGy.cm2), implant (719 mGy.cm2), form and position anomalies of the tooth (408 mGy.cm2), dentoalveolar pathologies (612 mGy.cm2), and endodontics (632 mGy.cm2). The determination of the DRL value in each phase revealed a downward trend until stabilization.ConclusionThe new solution presented in this study makes it possible to calculate and update the DRL value nationally and automatically among all centers. Also, the results showed that this approach is successful in establishing stabilized DRL values.  相似文献   

15.
We evaluated the absorbed dose to critical organs, as well as the image quality, at different partial angles in kV-CBCT (Cone Beam Computed Tomography) scanning of the head and neck region. CBCT images of phantom from a 200° rotation were performed by using three different scanning paths, anterior, posterior, and right lateral with Catphan504 and RANDO phantoms. Critical organ dose was measured using TLD 100H in the RANDO phantom. The image quality of those phantoms was evaluated, using HU uniformity, HU linearity, contrast-to-noise ratio, low contrast visibility and spatial resolution with the Catphan504 dataset; and 5-point grading scales for the RANDO phantom dataset by five radiation oncologists. The image qualities from Catphan504 and RANDO phantom of every scanning path were comparable, with no statistically significant difference (p ≥ 0.05). However, there was a significant difference in the critical organ dose in all paths (p < 0.05), depending on the critical organ location and the scanning direction. Scanning directions show no effects on the image quality. Differences in absorbed dose to critical organs should were evaluated. The posterior scanning path for the CBCT was deemed preferable due because of considerably lower doses to several critical organs of the head and neck region.  相似文献   

16.
PurposeWe aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations.MethodsThree phantoms (Catphan®600, CIRS®062M (inner phantom for head and outer phantom for body), and TomoTherapy® “Cheese” phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan®600. Images from the anthropomorphic phantom CIRS ATOM® for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared.ResultsIVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT.ConclusionsThe IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy.  相似文献   

17.
PurposeThe conventional weighted computed tomography dose index (CTDIw) may not be suitable for cone-beam computed tomography (CBCT) dosimetry because a cross-sectional dose distribution is angularly inhomogeneous owing to partial angle irradiations. This study was conducted to develop a new dose metric (f(0)CBw) for CBCT dosimetry to determine a more accurate average dose in the central cross-sectional plane of a cylindrical phantom using Monte Carlo simulations.MethodsFirst, cross-sectional dose distributions of cylindrical polymethyl methacrylate phantoms over a wide range of phantom diameters (8–40 cm) were calculated for various CBCT scan protocols. Then, by obtaining linear least-squares fits of the full datasets of the cross-sectional dose distributions, the optimal radial positions, which represented measurement positions for the average phantom dose, were determined. Finally, the f(0)CBw method was developed by averaging point doses at the optimal radial positions of the phantoms. To demonstrate its validity, the relative differences between the average doses and each dose index value were estimated for the devised f(0)CBw, conventional CTDIw, and Haba’s CTDIw methods, respectively.ResultsThe relative differences between the average doses and each dose index value were within 4.1%, 16.7%, and 11.9% for the devised, conventional CTDIw, and Haba’s CTDIw methods, respectively.ConclusionsThe devised f(0)CBw value was calculated by averaging four “point doses” at 90° intervals and the optimal radial positions of the cylindrical phantom. The devised method can estimate the average dose more accurately than the previously developed CTDIw methods for CBCT dosimetry.  相似文献   

18.
One measurement and an algebraic formula are used to calculate the incident air kerma (Ka,i) at the skin after any CT examination, including cone-beam CT (CBCT) and multi-slice CT (MSCT).Empty scans were performed with X-ray CBCT systems (dental, C-arm and linac guidance scanners) as well as two MSCT scanners. The accumulated Ka,i at the flat panel (in CBCT) or the maximum incident air kerma at the isocentre (in MSCT) were measured using a solid-state probe. The average Ka,i(skin), at the skin of a hypothetical patient, was calculated using the proposed formula. Additional measurements of dose at the isocentre (DFOV) and kerma-area product (KAP), as well as Ka,i(skin) from thermoluminiscence dosimeters (TLDs) and size-specific dose estimates are presented for comparison.The Ka,i(skin) for the standard head size in the dental scanner, the C-arm (high dose head protocol) and the linac (head protocol) were respectively 3.33 ± 0.19 mGy, 15.15 ± 0.76 mGy and 3.23 ± 0.16 mGy. For the first MSCT, the calculated Ka,i(skin) was 13.1 ± 0.7 mGy and the TLDs provided a Ka,i(skin) between 10.3 ± 1.1 mGy and 13.8 ± 1.4 mGy.Estimation of patient air kerma in tomography with an uncertainty below 7% is thus feasible using an empty scan and conventional measurement tools. The provided equations and website can be applied to a standard size for the sake of quality control or to several sizes for the definition of diagnostic reference levels (DRLs). The obtained incident air kerma can be directly compared to the Ka,i from other X-ray modalities as recommended by ICRU and IAEA.  相似文献   

19.
PurposeTo determine out-of-field doses produced in proton pencil beam scanning (PBS) therapy using Monte Carlo simulations and to estimate the associated risk of radiation-induced second cancer from a brain tumor treatment.MethodsSimulations of out-of-field absorbed doses were performed with MCNP6 and benchmarked against measurements with tissue-equivalent proportional counters (TEPC) for three irradiation setups: two irradiations of a water phantom using proton energies of 78–147 MeV and 177–223 MeV, and one brain tumor irradiation of a whole-body phantom. Out-of-field absorbed and equivalent doses to organs in a whole-body phantom following a brain tumor treatment were subsequently simulated and used to estimate the risk of radiation-induced cancer. Additionally, the contribution of absorbed dose originating from radiation produced in the nozzle was calculated from simulations.ResultsOut-of-field absorbed doses to the TEPC ranged from 0.4 to 135 µGy/Gy. The average deviation between simulations and measurements of the water phantom irradiations was about 17%. The absorbed dose contribution from radiation produced in the nozzle ranged between 0 and 70% of the total dose; the contribution was however small in absolute terms. The absorbed and equivalent doses to the organs ranged between 0.2 and 60 µGy/Gy and 0.5–151 µSv/Gy. The estimated lifetime risk of radiation-induced second cancer was approximately 0.01%.ConclusionsThe agreement of out-of-field absorbed doses between measurements and simulations was good given the sources of uncertainties. Calculations of out-of-field organ doses following a brain tumor treatment indicated that proton PBS therapy of brain tumors is associated with a low risk of radiation-induced cancer.  相似文献   

20.
PurposeTo investigate lens dose reduction with organ based tube current modulation (TCM) using the Monte Carlo method.MethodsTo calculate lens dose with organ based TCM, 36 pairs of X-ray sources with bowtie filters were placed around the patient head using a projection angle interval of 10° for one rotation of Computed Tomography (CT). Each projection was simulated respectively. Both voxelized and stylized eye models and Chinese reference male phantoms were used in the simulation, and tube voltages 80, 100, 120 and 140 kVp were used.ResultsDose differences between two eye models were less than 20%, but large variations were observed among dose results from different projections of all tube voltages investigated. Dose results from 0° (AP) directions were 60 times greater than those from 180° (PA) directions, which enables organ based TCM reduce lens doses by more than 47%.ConclusionsOrgan based TCM may be used to reduce lens doses. Stylized eye models are more anatomically realistic compared with voxelized eye models and are more reliable for dose evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号