首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeWe experimentally determined the radiophotoluminescent glass dosimeter (RPLD) dose responses for TomoTherapy, CyberKnife, and flattening-filter-free (FFF) linear accelerator (linac) outputs for dosimetry audits in Japan.MethodsA custom-made solid phantom with a narrow central-axis spacing of three RPLD elements was used for output measurement to minimise the dose-gradient effect of the non-flattening filter beams. For RPLD dose estimation, we used the ISO 22127 formalism. Additional unit-specific correction factors were introduced and determined via the measured data. For TomoTherapy (7 units) and CyberKnife (4 units), the doses were measured under machine-specific reference fields. For FFF linac (5 units), in addition to the reference condition, we obtained the field-size effects for the range from 5×5 cm to 25×25 cm.ResultsThe correction factors were estimated as 1.008 and 0.999 for TomoTherapy and CyberKnife, respectively. For FFF linac, they ranged from 1.011 to 0.988 for 6 MV and from 1.011 to 0.997 for 10 MV as a function of the side length of the square field from 5 to 25 cm. The estimated uncertainties of the absorbed dose to water measured by RPLD for the units were 1.32%, 1.35%, and 1.30% for TomoTherapy, CyberKnife, and FFF linac, respectively. A summary of the dosimetry audits of these treatment units using the obtained correction factors is also presented. The average percentage differences between the measured and hospital-stated doses were <1% under all conditions.ConclusionRPLD can be successfully used as a dosimetry audit tool for modern treatment units.  相似文献   

2.
PurposeAs there have been few reports on quantitative analysis of inter-institutional results for independent monitor unit (MU) verification, we performed a multi-institutional study of verification to show the feasibility of applying the 3–5% action levels used in the U.S. and Europe, and also to show the results of inter-institutional comparisons.MethodsA total of 5936 fields were collected from 12 institutions. We used commercial software employing the Clarkson algorithm for verification after a validation study of measurement and software comparisons was performed. The doses generated by the treatment planning systems (TPSs) were retrospectively analyzed using the verification software.ResultsMean ± two standard deviations of all locations were 1.0 ± 3.6%. There were larger differences for breast (4.0 ± 4.0%) and for lung (2.5 ± 5.8%). A total of 80% of the fields with differences over 5% of the action level involved breast and lung targets, with 7.2 ± 5.4%. Inter-institutional comparisons showed various systematic differences for field shape for breast and differences in the fields were attributable to differences in reference point placement for lung. The large differences for breast and lung are partially attributable to differences in the methods used to correct for heterogeneity.ConclusionsThe 5% action level may be feasible for verification; however, an understanding of larger differences in breast and lung plans is important in clinical practice. Based on the inter-institutional comparisons, care must be taken when determining an institution-specific action level from plans with different field shape settings and incorrectly placed reference points.  相似文献   

3.

Aim

Comparisons of integral dose delivered to the treatment planning volume and to the whole patient body during stereotactic, helical and intensity modulated radiotherapy of prostate.

Background

Multifield techniques produce large volumes of low dose inside the patient body. Delivered dose could be the result of the cytotoxic injuries of the cells even away from the treatment field. We calculated the total dose absorbed in the patient body for four radiotherapy techniques to investigate whether some methods have a potential to reduce the exposure to the patient.

Materials and methods

We analyzed CyberKnife plans for 10 patients with localized prostate cancer. Five alternative plans for each patient were calculated with the VMAT, IMRT and TomoTherapy techniques. Alternative dose distributions were calculated to achieve the same coverage for PTV. Integral Dose formula was used to calculate the total dose delivered to the PTV and whole patient body.

Results

Analysis showed that the same amount of dose was deposited to the treated volume despite different methods of treatment delivery. The mean values of total dose delivered to the whole patient body differed significantly for each treatment technique. The highest integral dose in the patient''s body was at the TomoTherapy and CyberKnife treatment session. VMAT was characterized by the lowest integral dose deposited in the patient body.

Conclusions

The highest total dose absorbed in normal tissue was observed with the use of a robotic radiosurgery system and TomoTherapy. These results demonstrate that the exposure of healthy tissue is a dosimetric factor which differentiates the dose delivery methods.  相似文献   

4.
5.
The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 using ionization chambers of 0.01 or 0.04 cm3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm2) for five brain SRT cases irradiated with dynamic conformal arcs.The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 were +0.48%, +0.56%, −0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were −0.35% (range, −0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively.The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm2.  相似文献   

6.

Background

Whole brain radiotherapy (WBRT) is a vital tool in radiation oncology and beyond, but it can result in adverse health effects such as neurocognitive decline. Hippocampal Avoidance WBRT (HA-WBRT) is a strategy that aims to mitigate the neuro-cognitive side effects of whole brain radiotherapy treatment by sparing the hippocampi while delivering the prescribed dose to the rest of the brain. Several competing modalities capable of delivering HA-WBRT, include: Philips Pinnacle step-and-shoot intensity modulated radiotherapy (IMRT), Varian RapidArc volumetric modulated arc therapy (RapidArc), and helical TomoTherapy (TomoTherapy).

Methods

In this study we compared these methods using 10 patient datasets. Anonymized planning CT (computerized tomography) scans and contour data based on fused MRI images were collected. Three independent planners generated treatment plans for the patients using three modalities, respectively. All treatment plans met the RTOG 0933 criteria for HA-WBRT treatment.

Results

In dosimetric comparisons between the three modalities, TomoTherapy has a significantly superior homogeneity index of 0.15 ± 0.03 compared to the other two modalities (0.28 ± .04, p < .005 for IMRT and 0.22 ± 0.03, p < .005 for RapidArc). RapidArc has the fastest average delivery time of 2.5 min compared to the other modalities (15 min for IMRT and 18 min for TomoTherapy).

Conclusion

TomoTherapy is considered to be the preferred modality for HA-WBRT due to its superior dose distribution. When TomoTherapy is not available or treatment time is a concern, RapidArc can provide sufficient dose distribution meeting RTOG criteria and efficient treatment delivery.  相似文献   

7.
PurposeTo provide a practical protocol for absolute dose verification of stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) treatment plans, based on our clinical experience. It aims to be a concise summary of the main aspects to be considered when establishing an accurate film dosimetry system.MethodsProcedures for film calibration and conversion to dose are described for a dosimetry system composed of Gafchromic™ EBT-XD films and a flatbed document scanner. Factors that affect the film-scanner response are also reviewed and accounted for. The accuracy of the proposed methodology was assessed by taking a set of strips irradiated to known doses and its applicability is illustrated for ten SBRT/SRS treatment plans. The film response was converted to dose using red and triple channel dosimetry. The agreement between the planned and measured dose distributions was evaluated using global gamma analysis with criteria of 3%/2mm 10% threshold (TH), 2%/2mm 10% TH, and 2%/2mm 20% TH.ResultsThe differences between the expected and determined doses from the strips analysis were 0.9 ± 0.6% for the red channel and 1.1 ± 0.7% for the triple channel method. Regarding the SBRT/SRS plans verification, the mean gamma passing rates were 99.5 ± 1.0% vs 99.6 ± 1.0% (3%/2mm 10% TH), 96.9 ± 3.5% vs 99.1 ± 1.3% (2%/2mm 10% TH) and 98.4 ± 1.8% vs 98.8 ± 1.5% (2%/2mm 20% TH) for red and triple channel dosimetry, respectively.ConclusionsThe proposed protocol allows for accurate absolute dose verification of SBRT/SRS treatment plans, applying both single and triple channel methods. It may work as a guide for users that intend to implement a film dosimetry system.  相似文献   

8.
ObjectiveWe designed a retrospective cohort of women with cervix cancer treated by radiation therapy with an extended follow-up to evaluate if the incorporation of modern radiation techniques was a prognostic factor.Material and methodsWe studied a cohort of patients with cervix cancer FIGO stage I-IVa treated in the last fifteen years. Patients were treated with radiotherapy alone (RT) or chemoradiation alone (CRT) using conventional radiotherapy (2DRT), conformational radiotherapy (3DRT), or intensity-modulated radiotherapy (IMRT) followed by high dose rate brachytherapy. Univariate and multivariate analysis was conducted to identify significant prognostic factors (p < 0.05).Results228 patients with cervix cancer were included. The treatment groups were CRT (64.8%), and RT (34.2%), with 31.6% submitted to 2DRT and 68.4% to IMRT/3DRT. The median follow-up was 6.3 years, the OS in 5 years according to the treatment groups was 48% for CRT, and 27.8% for RT (p < 0.001). The early-stage I-IIa (p = 0.001), CRT, and IMRT/3DRT were significant factors for better overall survival (OS) in the multivariate analysis. For the cancer-specific survival (CSS), chemoradiation, age <60 years, and IMRT/3DRT were significant. Treatment with IMRT/3DRT was the only prognostic factor associated with event-free survival (EFS).ConclusionIn a long-term follow-up, chemoradiation, early-clinical stage, and age <60 years were significant factors associated with better OS and CSS at 5 and 8 years. The incorporation of new radiation techniques, such as IMRT/3DRT, over time has a significant impact on all endpoints (EFS, OS, and CSS) of this cohort. These outcomes are useful to decide about the radiation technique to achieve satisfactory oncological results outside a clinical trial.  相似文献   

9.
PurposeTo develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT.MethodsFirst, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan].ResultsDifferences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels.ConclusionsOur proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans.  相似文献   

10.
PurposeCurrent quality assurance of radiotherapy involving bony regions generally utilises homogeneous phantoms and dose calculations, ignoring the challenges of heterogeneities with dosimetry problems likely occurring around bone. Anthropomorphic phantoms with synthetic bony materials enable realistic end-to-end testing in clinical scenarios. This work reports on measurements and calculated corrections required to directly report dose in bony materials in the context of comprehensive end-to-end dosimetry audit measurements (63 plans, 6 planning systems).Materials and methodsRadiochromic film and microDiamond measurements were performed in an anthropomorphic spine phantom containing bone equivalent materials. Medium dependent correction factors, kmed, were established using 6 MV and 10 MV Linear Accelerator Monte Carlo simulations to account for the detectors being calibrated in water, but measuring in regions of bony material. Both cortical and trabecular bony material were investigated for verification of dose calculations in dose-to-medium (Dm,m) and dose-to-water (Dw,w) scenarios.ResultsFor Dm,m calculations, modelled correction factors for cortical and trabecular bone in film measurements, and for trabecular bone in microDiamond measurements were 0.875(±0.1%), 0.953(±0.3%) and 0.962(±0.4%), respectively. For Dw,w calculations, the corrections were 0.920(±0.1%), 0.982(±0.3%) and 0.993(±0.4%), respectively. In the audit, application of the correction factors improves the mean agreement between treatment plans and measured microDiamond dose from −2.4%(±3.9%) to 0.4%(±3.7%).ConclusionMonte Carlo simulations provide a method for correcting the dose measured in bony materials allowing more accurate comparison with treatment planning system doses. In verification measurements, algorithm specific correction factors should be applied to account for variations in bony material for calculations based on Dm,m and Dw,w.  相似文献   

11.
Purpose/objectiveStereotactic ablative body radiotherapy (SABR) in multi-centre trials requires rigorous quality assurance to ensure safe and consistent treatment for all trial participants. We report results of vertebral SABR dosimetry credentialing for the ALTG/TROG NIVORAD trial.Material/methodsCentres with a previous SABR site visit performed axial film measurement of the benchmarking vertebral plan in a local phantom and submitted radiochromic film images for analysis. Remaining centres had on-site review of SABR processes and axial film measurement of the vertebral benchmarking plan. Films were analysed for dosimetric and positional accuracy: gamma analysis (>90% passing 2%/2mm/10% threshold) and ≤ 1 mm positional accuracy at target-cord interface was required.Results19 centres were credentialed; 11 had on-site measurement. Delivery devices included linear accelerator, TomoTherapy and CyberKnife systems. Five centres did not achieve 90% gamma passing rate. Of these, three were out of tolerance (OOT) in low (<5Gy) dose regions and > 80% passing rate and deemed acceptable. Two were OOT over the full dose range: one elected not to remeasure; the other also had positional discrepancy greater than 1 mm and repeat measurement with a new plan was in tolerance. The original OOT was attributed to inappropriate MLC constraints. All centres delivered planned target-cord dose gradient within 1 mm.ConclusionCredentialing measurements for vertebral SABR in a multi-centre trial showed although the majority of centres delivered accurate vertebral SABR, there is high value in independent audit measurements. One centre with inappropriate MLC settings was detected, which may have resulted in delivery of clinically unacceptable vertebral SABR plans.  相似文献   

12.
13.
AimTo evaluate the success of a patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA) practice for prostate cancer patients across multiple institutions using a questionnaire survey.BackgroundThe IMRT QA practice involves different methods of dose distribution verification and analysis at different institutions.Materials and MethodsTwo full-arc volumetric modulated arc therapy (VMAT) plan and 7 fixed-gantry IMRT plan with DMLC were used for patient specific QA across 22 institutions. The same computed tomography image and structure set were used for all plans. Each institution recalculated the dose distribution with fixed monitor units and without any modification. Single-point dose measurement with a cylindrical ionization chamber and dose distribution verification with a multi-detector or radiochromic film were performed, according to the QA process at each institution.ResultsTwenty-two institutions performed the patient-specific IMRT QA verifications. With a single-point dose measurement at the isocenter, the average difference between the calculated and measured doses was 0.5 ± 1.9%. For the comparison of dose distributions, 18 institutions used a two or three-dimensional array detector, while the others used Gafchromic film. In the γ test with dose difference/distance-to-agreement criteria of 3%?3 mm and 2%?2 mm with a 30% dose threshold, the median gamma pass rates were 99.3% (range: 41.7%–100.0%) and 96.4% (range: 29.4%–100.0%), respectively.ConclusionThis survey was an informative trial to understand the verification status of patient-specific IMRT QA measurements for prostate cancer. In most institutions, the point dose measurement and dose distribution differences met the desired criteria.  相似文献   

14.
15.
PurposeTo show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system.MethodsA method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images.ResultsCompared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0 ± 1.1 mm, −1.1 mm ± 1.1, and −0.1 ± 2.2 mm, respectively, in the lateral, longitudinal, and vertical directions.ConclusionsWith dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.  相似文献   

16.
《Endocrine practice》2011,17(6):891-896
Objectiveo characterize endocrine dysfunction in pediatric patients with brain tumors who received proton beam (PB) radiation therapy and to compare those treated with PB radiotherapy only versus combined conventional and PB irradiation.MethodsA retrospective review of medical records of patients ≤ 18 years of age who received PB radiation therapy for a brain tumor between 2000 and 2008 was performed. Variables analyzed included patient demographics, tumor type, therapeutic modalities, radiation doses, and types and timing of endocrine dysfunction.ResultsThirty-eight patients were identified, of whom 31 (19 boys and 12 girls; mean age, 11.9 ± 3.3 years) had undergone endocrine evaluation. Of these patients, 19 received PB radiotherapy only and 12 received conventional plus PB irradiation. Before irradiation, a cranial surgical procedure was performed in 28 study subjects, and 22 received chemotherapy. The mean duration of follow-up after radiation therapy was 1.8 ± 0.8 years. Nine patients (47%) in the PB only group and 4 (33%) in the conventional plus PB group developed endocrine dysfunction (no significant difference) after cranial irradiation. Children with endocrine sequelae treated with PB irradiation alone received fewer cobalt gray equivalents than those treated with conventional plus PB irradiation (5,384 ± 268 versus 5,775 ± 226, respectively; P < .02), and pituitary hormone deficiencies were detected later during follow-up in those who received PB radiotherapy only versus conventional plus PB irradiation (1.17 ± 0.4 years versus 0.33 ± 0.11 year, respectively; P < .01).ConclusionA high rate of endocrine sequelae was seen in our study. Children with brain tumors treated with conventional plus PB irradiation developed endocrine dysfunction faster and received a higher radiation dose than those receiving PB radiotherapy only. Prior surgical treatment and chemotherapy were additional risk factors. Large prospective studies are needed to evaluate further the incidence of endocrine sequelae after PB irradiation in children. (Endocr Pract. 2011;17:891-896)  相似文献   

17.
PurposeThis work presents an original algorithm that converts the signal of an electronic portal imaging device (EPID) into absorbed dose in water at the depth of maximum.MethodsThe model includes a first image pre-processing step that accounts for the non-uniformity of the detector response but also for the perturbation of the signal due to backscatter radiation. Secondly, the image is converted into absorbed dose to water through a linear conversion function associated with a dose redistribution kernel. These two computation parameters were modelled by correlating the on-axis EPID signal with absorbed dose measurements obtained on square fields by using an ionization chamber placed in water at the depth of maximum dose. The accuracy of the algorithm was assessed by comparing the dose determined from the EPID signal with the dose derived by the treatment planning system (TPS) using the ϒ-index. These comparisons were performed on 8 conformal radiotherapy treatment fields (3DCRT) and 18 modulated fields (IMRT).ResultsFor a dose difference and a distance-to-agreement set to 3% of the maximum dose and 2 mm respectively, the mean percentage of points with a ϒ-value less than or equal to 1 was 99.8% ± 0.1% for 3DCRT fields and 96.8% ± 2.7% for IMRT fields. Moreover, the mean gamma values were always less than 0.5 whatever the treatment technique.ConclusionThese results confirm that our algorithm is an accurate and suitable tool for clinical use in a context of IMRT quality assurance programmes.  相似文献   

18.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

19.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号