首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Current biology : CB》2020,30(19):R1158-R1163
  相似文献   

3.
《Current biology : CB》2022,32(20):4547
  相似文献   

4.
Plasmid partition   总被引:20,自引:0,他引:20  
S J Austin 《Plasmid》1988,20(1):1-9
  相似文献   

5.
Wang H  Liu X  Feng E  Zhu L  Wang D  Liao X  Wang H 《Current microbiology》2011,62(3):703-709
Plasmid incompatibility, which has no effect on other plasmids or chromosomal genes, can be used to cure a target plasmid. In this report, we successfully cured the plasmid pXO2 from Bacillus anthracis A16 with a newly constructed, incompatible plasmid pKSV7-oriIV and obtained a new pXO2-cured strain, designated A16PI2. This is the first time that a plasmid was cured from the B. anthracis wild-type strain A16 utilizing this principle, which could be considered as an efficacious method to cure large plasmids.  相似文献   

6.
The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Δlac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Δlac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and parB genes but that in at least one E. coli strain, all three genes are required for maximum stabilization. It cannot be determined from these results whether or not the stabilization effects seen with parCBA or the cer and loxP/Cre systems are strictly due to a reduction in the level of RK2 dimers and an increase in the number of plasmid monomer units or if these systems play a role in a more complex process of plasmid stabilization that requires as an essential step the resolution of plasmid dimers.  相似文献   

7.
Summary Replicating DNA molecules of the mini R6-5 plasmid, pKTO71, were purified by equilibrium centrifugation in two successive ethidium bromide-caesium chloride gradients, converted to linear forms by cleavage with either HindIII or BglII restriction endonuclease, and examined in the electron microscope. Determination of the replication fork positions in 65 replicating molecules demonstrated that replication is initiated at a unique location on the plasmid and that it proceeds uni-directionally from this site. The direction of replication is such that the origin-proximal BglII cleavage site is replicated late or, in the case of the parent R6-5 plasmid, is such that the R-determinant region of the molecule is replicated early. The origin of replication, located by these experiments at R6-5 coordinate 98.6 kb, is clearly distinct from that of the R6-5 incompatibility determinant which has been shown to be located on an adjacent PstI-generated DNA fragment whose termini have R6-5 coordinates 96.8 and 97.9 kb. This result indicates that the incompatibility function is not an origin DNA sequence.  相似文献   

8.
9.
10.
11.
12.
The demand for efficient production methods of plasmid DNA (pDNA) has increased vastly in response to rapid advances in the use of pDNA in gene therapy and in vaccines since the advantageous safety concerns associated with non-viral over viral vectors.A prerequisite for the success of plasmid-based therapies is the development of cost-effective and generic production processes of pDNA. However, to satisfy strict regulatory guidelines, the material must be available as highly purified, homogeneous preparations of supercoiled circular covalently closed (ccc) pDNA. Large-scale production of pDNA for therapeutic use is a relatively new field in bioprocessing. The shift from small-scale plasmid production for cell transfection to large-scale production sets new constraints on the bacterial fermentation, processing of bacterial lysate and final purification and formulation of the plasmid DNA. The choice of bacterial strain used for plasmid cultivation affects the plasmid yield, the proportion of different isoforms and the amount of endotoxins in the starting material. The choice of bacterial strain will be greatly influenced by the production and purification procedures of pDNA. Master and working cell banks need to be characterised and established. Alkaline lysis of the bacteria damages the pDNA, resulting in a reduced recovery of ccc pDNA and an increase in partially denaturated ccc pDNA and open circular (oc) forms. Shear stress in these processes needs to be tightly controlled, and buffer composition and pH need to be optimised. To obtain a homogeneous plasmid DNA preparation, different pDNA purification strategies aim at capturing ccc pDNA and eliminating the oc isoform. A highly purified final product corresponding to the stringent recommendations set forth by health and regulatory authorities can be achieved by (i). different chromatography techniques integrated with ultra/diafiltration to achieve optimal purification results; (ii). the formulation of the final pDNA product, that requires a detailed study of the plasmid structure; and (iii). the development of sensitive analytical methods to detect different impurities (proteins, RNA, chromosomal DNA, and endotoxins). We present here a revue of the whole process to obtain such a plasmid DNA, and report an example of RNAse-free purification of ccc pDNA that could be used for gene therapy.  相似文献   

13.
Plasmid diversity within the genus Chlamydia   总被引:3,自引:0,他引:3  
Examination of 12 Chlamydia psittaci strains recovered from nine different host species (three avian and six mammalian) revealed the presence of a 7.5 kb plasmid in all isolates except two ovine abortion strains, the human strain IOL207 and the Cal 10 strain. Restriction mapping analysis distinguished four different plasmids that were associated with avian, feline, equine and guinea-pig C. psittaci isolates, respectively. The restriction maps of these four C. psittaci plasmid types all differed from that of the plasmid recovered from C. trachomatis L2/434. Despite this plasmid diversity, which is likely to be of taxonomic importance, all four plasmids identified within the species C. psittaci were found to share some sequence homology, which was mapped to two separate regions in the plasmid molecules. One region, which showed a high degree of homology between C. psittaci plasmids and also detectable homology with the C. trachomatis plasmid, may represent a common replication control region for plasmids of this genus.  相似文献   

14.
Neurodegenerative diseases as a class do not have effective pharmacotherapies. This is due in part to a poor understanding of the pathologies of the disease processes, and the lack of effective medications. Gene delivery is an attractive possibility for treating these diseases. For the paradigm to be effective, efficient, safe and versatile vectors are required. In this study we evaluated three plasmid delivery systems for transgene expression in the rat hippocampus. Two of these systems were designed to have enhanced intracellular biodegradability. It was hypothesized that this system would be less toxic and could increase the free (non-vector) associated plasmids within the cell, leading to increased transgene activity. Polyethylenimine (PEI) and r-AAV-2 (recombinant adeno associated virus-2) were used as positive, non-viral and viral controls respectively, in the in vivo experiments. The results from the studies indicate there is a distinct difference between the various vectors in terms of total cells transfected, type of cell transfected, and toxicity. Non-viral systems were effective at transfecting both neurons and glia cells within the hippocampus, while the r-AAV-2 transfected mainly neurons. In summary, plasmid-mediated systems are effective for transgene expression within the brain and deserve further study.  相似文献   

15.
Plasmid incompatibility.   总被引:43,自引:7,他引:36  
  相似文献   

16.
Plasmid DNA vaccination   总被引:2,自引:0,他引:2  
Plasmid DNA vaccination against tuberculosis is a very powerful and easy method for the induction of strong humoral responses, CD4+ mediated secretion of Th1 cytokines and CD8+ mediated CTL activity in mice. Tuberculosis DNA vaccines have not been assessed so far in humans, and clinical trials with DNA in general have been somewhat disappointing. However, numerous studies have reported on the potent priming capacity of plasmid DNA for Th1 and CD8+ mediated immune responses, which can be boosted subsequently by recombinant protein or recombinant pox-viruses. With respect to tuberculosis, prime/boost regimens with Mycobacterium bovis BCG vaccine are particularly promising and warrant further analysis.  相似文献   

17.
18.
Plasmid DNA vaccines   总被引:4,自引:0,他引:4  
DNA vaccination is a novel approach for inducing an immune response. Purified plasmid DNA containing an antigen’s coding sequences and the necessary regulatory elements to expres them is introduced into the tissue via intramuscular injection or particle bombardment. Once the DNA reaches the tissue, the antigen is expressed in enough quantity to induce a potent and specific immune response and to confer protection against further infections. The effectiveness of DNA vaccines against viruses, parasites, and cancer cells has been demonstrated in numerous animal models. This new approach comes as an aid for the prevention of infectious diseases for which the conventional vaccines have failed. DNA vaccine research is providing new insights into some of the basic immunological mechanisms of vaccination such as antigen presentation, the role of effector cells, and immunoregulatory factors. In addition, DNA vaccines may enable us to manipulate the immune system in situations where the response to agents is inappropriate or ineffective. The study of the potential deleterious effects of DNA vaccines is furthering our knowledge regarding the relationship between bacterial DNA and the immune system, as well as its potential application for the study of neonatal tolerance and autoimmunity.  相似文献   

19.
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on–off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA–protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.  相似文献   

20.
Pseudomonas acidovorans 9 transforming alpha-methylstyrene into acetophenone contains four types of plasmid DNA with molecular masses of 130, 110, 36 and 54 MD. The loss of the "growth on alpha-methylstyrene" property by this strain correlates with the absence of plasmids with the molecular masses of 130 and 110 MD from the cells. All the types of plasmid DNA are found in transconjugants growing on alpha-methylstyrene and produced by crossing the parent P. acidovorans strain with the plasmidless variant of this strain incapable of alpha-methylstyrene transformation. Apparently, plasmids with the molecular masses of 130 and 110 MD participate in the genetic control of alpha-methylstyrene transformation into acetophenone by P. acidovorans 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号