首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce in this paper the dendroTools R package for studying the statistical relationships between tree-ring parameters and daily environmental data. The core function of the package is daily_response(), which works by sliding a moving window through daily environmental data and calculating statistical metrics with one or more tree ring proxies. Possible metrics are correlation coefficient, coefficient of determination and adjusted coefficient of determination. In addition to linear regression, it is possible to use a nonlinear artificial neural network with the Bayesian regularization training algorithm (brnn). dendroTools provides the opportunity to use daily climate data and robust nonlinear functions for the analysis of climate-growth relationships. Models should thus be better adapted to the real (continuous) growth of trees and should gain in predictive capabilities. The dendroTools R package is freely available in the CRAN repository. The functionality of the package is demonstrated on two examples, one using a mean vessel area (MVA) chronology and one a traditional tree-ring width (TRW).  相似文献   

2.
利用树木年轮重建赣南地区1890年以来 2-3月份温度的变化   总被引:1,自引:0,他引:1  
曹受金  曹福祥  项文化 《生态学报》2012,32(20):6369-6375
采用树木年轮气候学方法,利用江西赣南地区马尾松(Pinus massoniana)的年轮宽度资料,分析了马尾松径向生长与气候要素变化的相关及响应关系,结果表明赣南地区马尾松径向生长与当年2—3月份的平均温度相关性最高。在响应分析的基础上,重建了江西赣南地区1890年以来2—3月份温度的变化历史。重建序列显示在过去119a中研究区存在3个较为明显的冷期(1892—1906年、1918—1922年、1944—1957年)和3个明显的暖期(1909—1917年、1959—1968年和1998—2008年)。  相似文献   

3.
The response of non-native forest plantation trees to climate change remains poorly understood.We hypothesized that precipitation and temperature modulate tree-ring width chronology at each site and that higher tree growth is exhibited at remote sites than sites near copper mines. This study investigates if the annual tree-ring boundaries in non-native Pinus kesiya Royle ex Gordon in Zambia are distinct, cross-datable, and coherent with climate signal. We collected increment cores from live trees and climate data near and further away from emission sources and developed site tree-ring width chronologies. Based on cross-dating and chronology building statistics (i.e., ESP > 0.85; Glk > 0.6 and series inter-correlation > 0.4), P. kesiya posses cross-datable distinct annual growth ring boundaries that exhibited a high climate signal at both sites. The tree-ring width chronology was positively modulated by precipitation and negatively by solar radiation and temperature. The dry season precipitation was the limiting factor for the growth of P. kesiya. The predicted decrease in dry season precipitation and increase in temperature and solar radiation may reduce tree growth of P. kesiya, reduce productivity, and extend the rotation age. The mean ring width in P. kesiya was not significantly (p = 0.296) different between sites. However, the mean basal area increment at the site near the emission source (Ichimpe) was significantly (p < 0.001) higher than at the remote site (Chati), suggesting site-specific influences that require investigation. We recommend evaluating the causes and consequences of tree growth variation between sites and their relation to environmental variation, including microclimate, soils, and pollution. In this regard, an assessment of site-specific ring-width chronology and tree growth variation in this study directly contributes to an improved understanding of non-native P. kesiya ecology, and it offers the potential to study trees' responses to edaphic and climatic factors. Knowing these responses deepens our understanding of non-native pine tree growth in the face of climate change, given the significant role of tropical forests in the global carbon cycle.  相似文献   

4.
Current understanding of the paleoclimatic variability across the Tibetan Plateau (TP) is still limited because of the lack of long-term climatic records. We developed a regional tree–ring width chronology of Picea likiangensis var. balfouriana from the central Hengduan Mountains region, in the southeastern TP. Climate-growth correlation analysis revealed that the current year’s July (cJuly) and the current year’s August (cAugust) mean minimum temperature was the main climatic factor controlling tree-ring growth. Using a linear regression function, we reconstructed this indicator for the past 214 years (1795–2008) to produce the first mean minimum temperature reconstruction for the central Hengduan Mountains. The reconstruction satisfied all statistical calibration and validation tests, and represented 35.9% of the temperature variance recorded over the 1958–2008 instrumental period (34.6% after adjusting for the loss of the degrees of freedom). During the past 214 years, two major cold periods were identified from 1839 to 1853 and 1857–1942, and four major warm periods from 1802 to 1813, 1819–1838, 1972–1981, and 1988–2008. The degree of warming from 1988 to 2008 was unprecedented over the past two centuries. Spatial field correlation with the gridded temperature dataset revealed that our reconstruction captures large-scale regional temperature variations for the southeastern TP and its vicinity. The reconstructed variations were consistent when compared to other regional temperature datasets, historical documents, and records of glacier fluctuations in the surrounding high mountains. This consistency with multiple records suggests that our reconstructed sequence is reliable and it could represent historical large-scale temperature changes on the southeastern TP.  相似文献   

5.
In this study, we developed the tree-ring width chronology for the period of 1404 BCE to 2015 CE using Qilian juniper (Sabina przewalskii Kom.) trees collected from the Buerhanbuda Mts. in the southeastern Qaidam Basin (QB) near Nuomuhong Village, Qinghai Province. This is the first and longest chronology to date in this region. Based on the relationships between the tree-ring width chronology and climate data, the annual precipitation from previous July to current June (July-June) was reconstructed for the past 2917 years from 902 BCE to 2015 CE. This reconstruction accounted for 47.9% of the total variance in the actual July-June precipitation in the calibration period (1957–2015). The full reconstruction captured distinct wet and dry variability, and contained evidence of some low-frequency climate signals. We identified 13 wet and 12 dry periods, of which 1443–1503 CE and 1789–1836 CE were the two longest dry periods. General agreements in the low-frequency variations between the July-June precipitation and other moisture-sensitive records for the northeastern Tibetan Plateau (TP) suggested that the reconstruction in this study represented a regional signal. Spatial correlations with gridded precipitation data also indicated that the reconstructed July-June precipitation could adequately represent climate fluctuations over a large area of the northeastern TP. The new tree-ring width chronology and precipitation reconstruction are important for understanding natural climate change in the southeastern QB.  相似文献   

6.
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross‐date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross‐dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.  相似文献   

7.
太白山南北坡高山林线太白红杉对气候变化的响应差异   总被引:1,自引:0,他引:1  
秦进  白红英  李书恒  王俊  甘卓亭  黄安 《生态学报》2016,36(17):5333-5342
气候变化对秦岭植被生长的影响已经引起了人们的广泛关注,在相同的立地条件下,植被对气候变化的响应会因坡向不同而产生差异,秦岭的分水岭太白山尤为典型,为更进一步揭示不同坡向太白红杉(Larix chinensis)对气候变化响应的差异,以树木年代学为依据,利用采自太白山南、北坡相同海拔的太白红杉树芯样本分别建立了树轮年表,并分析了两者的年表特征,探讨了树轮宽度指数与气候因子之间的相关性及逐步线性回归方程。结果表明:太白山南、北坡太白红杉年表的平均敏感度、样本间平均相关系数、样本总体代表性等特征值较高,表明两个不同坡向年表中皆含有丰富的环境信息,相对而言,北坡样地植被对气候的响应较南坡样地敏感;由相关性分析可知,南北坡太白红杉差值年表对气温和降水响应显著的月份有所差异,北坡样地轮宽指数与当年和前一年1—6月平均气温皆为显著正相关关系,而南坡样地轮宽指数仅与当年5—6月平均气温通过显著性检验。南、北坡太白红杉径向生长都明显受到前一年6月降水"滞后效应"的一致影响,但北坡仅与当年8月的降水呈显著正相关,南坡与当年1—4月的平均降水量存在十分显著的负相关;多元线性逐步回归模型显示,气温因子对回归方程的贡献最大值均大于降水因子的贡献最大值,表明气温因子的变化更易引起太白红杉树轮宽度的变化,另外,气温因子对北坡样地回归模型的贡献值比气温因子对南坡样地回归模型的贡献值大,表明北坡样地处树轮宽度指数对气温因子更敏感,并且与相关分析结果一致。  相似文献   

8.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

9.
Aims and location The potential of pollen records in quantitative climate reconstructions has been widely debated but seldom tested. Our aim is to develop a pollen–climate transfer function for northern Europe and test its performance and inference power by numerical cross‐validation with modern climate data. Annual mean temperature (Tann) was assessed as the critical climatic variable because Tann has a distinct south–north gradient (5.5 to ?4.7 °C) in the study region with a corresponding zonal vegetation gradient from the hemiboreal zone in the south to the northern boreal zone in the north. Methods We collected 137 pollen surface samples from small‐ to medium size lakes from southern Estonia to northern Finland. The transfer function for Tann was developed with weighted averaging partial least squares (WA‐PLS) regression. All 102 terrestrial pollen and spore types were included in the calculation sum and all 137 surface samples and all 102 taxa were included in the transfer function. The performance of the WA‐PLS transfer function was evaluated by leave‐one‐out cross‐validation. Results A cross‐validated root mean square error of prediction (RMSEP) of our model is 0.89 °C and the coefficient of determination (r2) between the observed meteorological Tann values and those predicted by the model in leave‐one‐out cross‐validation is 0.88. The RMSEP as a percentage of the gradient length of Tann is 8.8%. These figures indicate high performance statistics for our transfer function compared with other inference models. This is probably because of standardization of our surface‐sampling and pollen‐analytical procedures, careful selection of the surface sample sites with consideration of the relevant pollen source area, the simple patterns of vegetation zones and climate in the study area, and the mostly natural floristic composition of the forests in northern Europe. However, we also demonstrate the limitations of our model in reliably detecting fine‐scale climatic variability. Main conclusions The study shows the strong influence of Tann on modern pollen composition and demonstrates the potential of pollen data for long‐term climate reconstructions in northern Europe. It also provides evidence against simple interpretations of fine‐scale variations in a single climate reconstruction. In particular, our results highlight the importance of careful study design and implementation in the construction of pollen–climate transfer functions.  相似文献   

10.
11.
Annual height increments of 35 Scots pine (Pinus sylvestris L.) trees from the northern timberline (68°30′N, 27°30′E, 220 m a.s.l., Laanila, North Finland) and monthly climate data from two meteorological stations, Sodankylä (from 1908 to present) and Ivalo (from 1958 to present) were used in climate and growth comparisons. The measured growth series were standardized using 67% splines. A height-increment chronology was built by averaging the indices. This chronology was further divided into high- and low-frequency components using reciprocal filters. Among the temperature variables, mean July temperature of the previous year correlated most significantly with height growth. We compared several simple linear reconstruction models based on the three height-growth chronologies (the unfiltered, high-pass and low-pass filtered chronologies) individually as predictors of the mean July temperature. The high-frequency reconstruction showed superior model performance in calibrations. However, only calibrations using climate data from the nearest Ivalo station were time stable and showed reasonable reconstruction skill. The coefficient of determination (R2) in the final model during calibration period (1958–1998) is 0.67.  相似文献   

12.
Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207–1346, 1383–1425, 1455–1482, 1533–1574, 1627–1646, and 1694–1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581–1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.  相似文献   

13.
Individual tree-ring width chronologies and mean chronologies from Pinus tabuliformis Carr. (Chinese pine) and Sabina przewalskii Kom. (Qilian juniper) tree cores were collected and analyzed from two sites in the eastern Qilian Mountains of China. The chronologies were used to analyze individual and time-varying tree-ring growth to climate sensitivity with monthly mean air temperature and total precipitation data for the period 1958–2008. Climate–growth relationships were assessed with correlation functions and their stationarity and consistency over time were measured using moving correlation analysis. Individuals’ growth–climate correlations suggested increased percentages of individuals are correlated with certain variables (e.g., current June temperature at the P. tabuliformis site; previous June, December and current May temperature and May precipitation at the S. przewalskii site). These same climatic variables also correspond to the mean chronology correlations. A decreased percentage of individuals correlated with these climatic variables indicates a reduced sensitivity of the mean chronology. Moving correlation analysis indicated a significant change over time in the sensitivity of trees to climatic variability. Our results suggested: (1) that individual tree analysis might be a worthwhile tool to improve the quality and reliability of the climate signal from tree-ring series for dendroclimatology research; and (2) time-dependent fluctuations of climate growth relationships should be taken into account when assessing the quality and reliability of reconstructed climate signals.  相似文献   

14.
采集木王国家森林公园的油松树轮样芯,建立树轮宽度标准化年表(STD),与镇安气象站的气候因子进行相关分析,利用线性回归分析重建了镇安县1853—2017年(165年)3—4月平均最高气温。结果表明: 树轮序列与3—4月平均最高气温相关性最大(r=0.596,n=60,P<0.01)。3—4月平均最高气温重建方程的方差解释量为33.2%,重建方程稳定可靠,结果可信。重建序列中偏暖年份出现25次,偏冷年份出现29次,偏暖年份较多地伴随着洪涝事件,偏冷年份较多地伴随着干旱事件。重建序列存在明显的冷暖变化,存在2个偏冷时期(1902—1917年、1953—2000年)、4个偏暖时期(1868—1892年、1917—1937年、1941—1953年、2001—2012年)。重建序列有明显的2~7、8~15、18~28、75~96、100~125年周期变化特征,其中准113、88、22年的周期变化分别为时段内的第一、第二及第三主周期,这些周期性变化可能与太阳活动、季风和厄尔尼诺-南方涛动的变化存在一定的关系。  相似文献   

15.
Growth/climate response shift in a long subalpine spruce chronology   总被引:10,自引:3,他引:7  
A new Norway spruce (Picea abies (L.) Karst.) tree-ring width chronology based on living and historic wood spanning the AD 1108–2003 period is developed. This composite record combines 208 high elevation samples from 3 Swiss subalpine valleys, i.e., Lötschental, Goms, and Engadine. To retain potential high- to low-frequency information in this dataset, individual spline detrending and the regional curve standardization are applied. For comparison, 22 high elevation and 6 low-elevation instrumental station records covering the greater Alpine area are used. Previous year August–September precipitation and current year May–July temperatures control spruce ring width back to ~1930. Decreasing (increasing) moving correlations with monthly mean temperatures (precipitation) indicate instable growth/climate response during the 1760–2002 period. Crucial June–August temperatures before ~1900 shift towards May-July temperature plus August precipitation sensitivity after ~1900. Numerous of comparable subalpine spruce chronologies confirm increased late-summer drought stress, coincidently with the recent warming trend. Comparison with regional-, and large-scale millennial-long temperature reconstructions reveal significant similarities prior to ~1900 (1300–1900 mean r=0.51); however, this study does not fully capture the commonly reported 20th century warming (1900–1980 mean r=?0.17). Due to instable growth/climate response of the new spruce chronology, further dendroclimatic reconstruction is not performed.  相似文献   

16.
The “two-third spline” (2/3S) is a frequently applied method to detrend tree-ring series. It fits a spline with a 50% frequency cutoff at a frequency equal to two-thirds of each sample length in a dataset. It was introduced to ensure a minimum loss of low-frequency variance, which is resolvable during the detrending of ring-width series.In this paper I show potential problems that arise when rusing this method. The 2/3S runs counter the strengths of using a digital filter to detrend – i.e. one is giving up full control over the frequency-removing characteristics of the growth curve and each individual time series retains a different amount of low frequency. Thus, the 2/3S is less suitable for reconstructing climate or to compare environmental impacts on tree growth between groups – both of which comprise the majority of dendrochronological analyses – as it will likely introduce a temporal frequency bias. Within a long chronology it will result in decreasing power to resolve low frequencies towards present in a living-only trees setting, especially when the youngest segment lengths are 100 years and shorter, and more generally during the period where the chronology is constructed from samples with shorter segment lengths compared to the period with longer segment lengths. The frequency bias will also significantly impact regression slopes and correlation coefficients, possibly distorting analyses investigating multiple groups with different mean segment lengths. Highlighting these potential biases, I recommend the community to not use this method on an individual basis but rather to use a fixed spline stiffness for all samples based on the n% criterion (n = 67) of e.g. the mean segment length of the entire dataset.  相似文献   

17.
Fennoscandia is one of the most prominent regions in the world for dendroclimatological research. Yet, millennium-long tree-ring chronologies in this region have mainly been developed from Scots pine (Pinus sylvestris L.). To explore the possibility of building long-term chronologies using other dominating tree species in the region, this paper presents the first two millennia-long Norway spruce (Picea abies (L.) Karst.) ring-width chronology from Northern Europe. The chronology is composed of living trees and subfossil wood and covers the period from BCE 115 to 2012 CE. A sufficiently replicated and robust chronology is built for the past 360 years back to 1649 CE. Further back in time, the common growth signal is reduced, and hence the reliability of the earlier section of the chronology is lower. The climate calibration results show that the spruce ring-width correlation with June-July mean temperatures over the period 1901–2012 is positive and significant (r = 0.6, p < 0.01) and representing the temperature variability of a spatial domain covering west-central Scandinavia. These results show the ability of Norway spruce to serve as a proxy for paleoclimatic research and the possibility of extending the chronology far back in time in the region, and therefore present an opportunity for carrying out new inter-and intraregional proxy analyses.  相似文献   

18.
Regional chronology and climate–growth relationships assessment are known to be sensitive to sampling effort. To disentangle the respective benefits of increasing whether the number of plots or the number of trees per plot when investigating climate–growth relationships under temperate conditions, we propose to simulate samples from a set of 84 plots established in plantations of Corsican pine (Pinus nigra Arnold ssp. laricio Poiret var. Corsicana), within which 10 dominant trees were cored in 1992. The effect of sampling effort was investigated through 20 modalities of sampled plots (from 3 to 84) and 10 modalities of sampled trees per plot (from 1 to 10). Regional chronology was studied using the mean effective correlation and the expressed population signal, while climate–growth relationships were evaluated through correlation functions. The calculation of the correlation functions also allowed testing the effect of sampling effort on various climatic regressors presenting different climate–growth correlation strengths. The accuracy of the dendroecological investigations increased with increasing sample size: estimating climate sensitivity with a regional chronology built from a small sample led to a general under-estimation of the climate–growth correlations. Decreasing sample size also increased the risk of estimating (i) “false” non-significant correlations for the most influencing climatic regressors, and (ii) “false” significant correlations for the less influencing ones. Increasing the number of plots was found of a greater interest than increasing the number of trees per plot to improve the climate–growth relationships assessment. Finally, the analysis revealed that the improvement of the expressed population signal with increasing sampling effort did not linearly mirror the bettering in the climate–growth correlations assessment.  相似文献   

19.

Background and Aims

Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated.

Methods

Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data.

Key Results

The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation.

Conclusions

The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.Key words: South-east Tibetan Plateau, Rhododendron nivale, alpine shrub, growth ring, cross-dating, dendroclimatological potential, climate/growth association  相似文献   

20.
Progress in quantitative wood anatomy has resulted in a growing number of increasingly understood proxies from the tree-ring archive. Much of this work has been based on tree species in the Northern Hemisphere. Here, we present and examine a relatively dense network of wood property chronologies (wood density, tracheid radial diameter, cell wall thickness and ring width) from several species in Tasmania, southern Australia. We ask how the relationships amongst the different types of chronologies differ within and amongst species. We also consider how each chronology responds to monthly climate. In general terms, and similar to findings in the Northern Hemisphere, relationships between the various wood properties and climate are stronger than those between climate and ring width chronologies. An important exception to this is the highest elevation Lagarostrobos franklinii site. Additionally, strongest response to climate for the wood properties generally occurs for the concurrent growing season compared to the prior growing season for ring width. Relationships amongst the various chronology types differ for the various species, with L. franklinii also showing some variation in these relationships by site (possibly associated with elevation). Results suggest there is considerable value in further exploring the potential for developing anatomical wood chronologies for climate reconstruction from other species for which ring widths do not exhibit a strong climate signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号