首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu H  Compton SG 《PloS one》2012,7(1):e30833
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences.  相似文献   

2.
Pollinator fig wasps (Agaonidae) are a model system for studies of sex ratio evolution. They lay their eggs in galled ovules within figs. Only one adult emerges from each gall, suggesting that only one egg is always laid per ovule, but if double oviposition occurs then the assumption that adult (realised) sex ratios of fig wasps are representative of primary sex ratios may be violated. Many galls also fail to produce any wasps. If they initially contained eggs then differential mortality rates may also modify realized sex ratios. We investigated whether Kradibia (= Liporrhopalum) tentacularis foundresses in Ficus montana figs avoid laying in ovules that already contain eggs. Comparisons of oviposition frequencies and wasp emergence frequencies showed that most galls that failed to produce wasps will have had eggs laid in them, but few occupied ovules contained two eggs. Realised sex ratios therefore do not necessarily reflect primary sex ratios in this species, but double oviposition is not responsible.  相似文献   

3.
The interaction between the hundreds of Ficus species and their specific pollinating fig wasps (Agaonidae) presents a striking example of mutualism. Foundress fig wasps pollinate fig flowers, but also lay their eggs in (and gall) some of them. Only two cases of cheating fig wasps (that fail to pollinate) have been reported, from two continents, suggesting that there is a cost to abandoning pollination. Reasons for the rarity of cheating are a major question in fig biology, because persistence of the mutualism depends on fig wasps continuing to pollinate. A cost in terms of reduced reproductive success among cheaters could be one explanation. Here we compare the behavior and reproduction of an undescribed Eupristina sp., a cheater that coexists with the pollinator Eupristina altissima on Ficus altissima in southern China. Adult females of both species fought with conspecifics when they were seeking entry through the ostiole into receptive figs, but there was no fighting with heterospecifics. Despite a similar body size, female pollinators contained more eggs than female cheaters. Pollinators and cheaters produced similar number of galls, and although almost twice as many flowers were galled in figs entered by two compared to one foundress, larval mortality was greatly increased when two foundresses were present. Larval mortality was also significantly higher for cheaters compared to pollinators, independent of the number of foundresses. Ovules galled by the cheater were thus significantly less likely to result in adult offspring, suggesting that there are significant costs associated with abandoning the mutualism.  相似文献   

4.
5.
The mutualistic interaction between Ficus spp. and their pollinating fig wasps (Agaonidae) centres on the plants’ unique inflorescences—their figs. Each Ficus species is pollinated by foundresses of host-specific fig wasps which enter figs to lay eggs in the female flowers. Most foundresses are trapped in the first figs they enter, but in some species wingless foundresses can re-emerge and subsequently enter and oviposit into further figs. We investigated whether number of potential oviposition sites, age of the fig and age of the wasp influence the likelihood of re-emergence of lone foundresses of the Asian fig wasp Kradibia (=Liporrhopalum) tentacularis from previously un-entered figs of Ficus montana. Likelihood of re-emergence was not influenced by wasp age or flower numbers (resource abundance), but was more frequent from older figs that had waited longer to be pollinated. Laying eggs in several figs offers clear advantages, but foundresses often failed to re-emerge despite being unable to lay all their eggs. Resource quality not quantity appears to be the main influence on the fig wasp’s oviposition decisions. The physical difficulty that the wasps experience when trying to re-emerge may prevent it, even when re-emergence would be advantageous for both the insect and its host plant, but older fig wasps were not detectably ‘weaker’ than younger individuals.  相似文献   

6.
Some female pollinating fig wasps (foundresses) re-emerge from figs after oviposition/pollination. We investigated why this occurs in the mutualism between the gynodioecious Ficus montana and Liporrhopalum tentacularis. Re-emergence increased with foundress density in figs and some foundresses oviposited in two male figs, indicating that they re-emerge because of oviposition site limitation. Re-emergence was independent of fig diameter, indicating that permeability is not because of fig age at entry. Rather, as some foundresses also pollinate two female figs we suggest permeability is selected for because it increases pollinator production and/or efficiency (although, potentially opposing these hypotheses, we also found between-tree differences in permeability in male figs). In addition, we show that re-emergence is much more common than previously suspected, and more common from gynodioecious than monoecious fig species. We argue that our findings in F. montana could explain this pattern of incidence.  相似文献   

7.
Abstract. 1. Pollinating fig wasps (Hymenoptera, Agaonidae) display sex ratio adjustment, producing less female‐biased combined sex ratios as the number of ovipositing females (foundresses) inside a fig increases. Because males have low mobility, the oviposition sites (galled ovules) chosen by each foundress are likely to have consequences for the mating structure of wasp populations within the figs. 2. In this study, the spatial location of male and female progeny of the pollinating fig wasp Liporrhopalum tentacularis developing within figs of its host plant Ficus montana was examined to investigate two questions: (i) are male and/or female wasp offspring clustered together or interspersed? and (ii) is their distribution affected by whether one or two foundresses are present? Microsatellite markers were used to identify the progeny of different foundresses in dual‐foundress figs. 3. More offspring developed in the central part of the figs, compared with the ostiolar and basal parts, irrespective of foundress number. Neither male nor female wasp offspring were clustered within a fig. 4. The sons of the second foundress to enter a fig were positioned at similar minimum distances to both sibling and non‐sibling females, whereas the sons of the first foundress were closer to their sibling females than to non‐sibling females. If male wasps mate predominantly with females in adjacent galls, then the positioning of sons by the second foundresses is beneficial for them both in terms of reduced sibling mating and because they are provided with ready access to the female progeny of the first foundress.  相似文献   

8.
The interaction between figs (Ficus spp., Moraceae) and their pollinator fig wasps (Hymenoptera: Agaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of Kradibia tentacularis (Grandi) in their first and subsequent male figs of Ficus montana Blume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.  相似文献   

9.
Ficus and their species–specific pollinator fig wasps represent an obligate plant–insect mutualism, but figs also support a community of non‐pollinating fig wasps (NPFWs) that consist of phytophages and parasitoids or inquilines. We studied interactions between Kradibia tentacularis, the pollinator of a dioecious fig tree species Ficus montana, and an undescribed NPFW Sycoscapter sp. Members of Sycoscapter sp. oviposited 2–4 weeks after pollinator oviposition, when host larvae were present in the figs. No negative correlation was found between the numbers of the two wasp species emerging from figs in a semi‐natural population. However, in experiments where the numbers of pollinator foundresses entering a fig were controlled, Sycoscapter sp. significantly reduced the numbers of pollinator offspring. Consequently, it can be concluded that Sycoscapter sp. is a parasitoid of K. tentacularis (which may also feed on plant tissue). Sycoscapter females concentrate their oviposition in figs that contain more potential hosts, rendering invalid conclusions based on simple correlations of host and natural enemy numbers.  相似文献   

10.
Fig trees (Ficus: Moraceae) are pollinated by female fig wasps (Agaonidae) whose larvae develop inside galled flowers of unusual inflorescences (figs). Most fig trees also support communities of non‐pollinating fig wasps. Figs of different species display great size variation and contain tens to tens of thousands of flowers. Around one‐half the species of fig trees have the gynodioecious breeding system, where female trees have figs that produce seeds and male trees have figs that support development of pollinators. Mutual mimicry between receptive male and female figs ensures that pollinators enter female figs, even though the insects will die without reproducing, but the need to give no sex‐specific cues to the pollinators may constrain differences in size between receptive male and female figs. We compared relationships between inflorescence size and some measures of reproductive success in male and female figs of Ficus montana grown under controlled conditions in the presence of the pollinator Kradibia tentacularis and its main parasitoid Sycoscapter sp. indesc. Female figs that contained more flowers produced more seeds, but male figs did not increase the production of female pollinator K. tentacularis fig wasps in proportion of the flower number. Although more flowers were galled by the pollinators in male figs containing more female flowers, the high larval mortality caused by parasitism and nutritional limitation prevented the increase in the production of adult female offspring. Selection may favor the increase in flower numbers within figs in female plants of F. montana, but contrarily constrain this attribute in male plants.  相似文献   

11.
Lifetime reproductive success in female insects is often egg‐ or time‐limited. For instance in pro‐ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro‐ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non‐pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.  相似文献   

12.
【目的】榕树(Ficus)依赖专性榕小蜂(Agaonidae)传粉,同时为传粉榕小蜂提供繁衍后代的场所,两者形成动植物间经典的协同进化关系。在雌花期果内,榕小蜂需在有限的存活时间内完成传粉和产卵,而传粉榕小蜂如何在传粉与产卵之间进行权衡仍然是悬而未解的问题。本研究旨在明确传粉榕小蜂——一种栉颚榕小蜂Ceratosolen sp.在雌雄同株的聚果榕Ficus racemosa雌花期果内的行为活动及繁殖模式。【方法】借助测微尺测量聚果榕榕果雌花花柱长度与传粉榕小蜂(Ceratosolen sp.)产卵器长度,通过显微视频记录传粉榕小蜂在雌花期果内搜索、传粉及产卵行为;结合单果控制性引蜂试验,测定不同阶段榕小蜂个体大小、孕卵量、携粉量,以及雄花期最终繁殖的榕小蜂后代和榕果种子数量。【结果】聚果榕雌花花柱长度存在树间变异,榕小蜂产卵器长度比绝大多数的雌花花柱长,说明该小蜂可以产卵于大部分的雌花子房里。通常个体大的榕小蜂孕卵量更多,但个体大小与携粉量之间相关性不显著。观察发现,榕小蜂进入雌花期榕果内,前6 h集中产卵,可产下孕卵量的95%,平均搜索用时27 s,产卵用时46 s,此期间传粉行为少见,花粉筐中携带花粉量亦无明显变化;榕小蜂进果后6-24 h,主要执行传粉,其行为主动,连贯高效,单次传粉用时平均为2 s,最终可传完携粉量的80%。控制引蜂试验也证实榕小蜂进入榕果内前6 h主要执行产卵繁殖后代,之后6-24 h主要执行传粉以繁殖榕树种子。【结论】在雌雄同株的聚果榕雌花期榕果内,榕小蜂先产卵、后传粉。本研究首次展示了传粉榕小蜂在聚果榕雌花期榕果内的产卵和传粉行为,并获得与行为相匹配的产卵量和传粉繁殖量,反映了具主动传粉行为的榕小蜂在传粉和产卵之间存在时间和数量上的权衡。  相似文献   

13.
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their “fruits” (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.  相似文献   

14.
徐睿  张媛  彭艳琼  杨大荣 《生态学报》2016,36(4):1134-1140
榕树及其专一性传粉榕小蜂组成了动植物界最为经典的协同进化关系,传粉榕小蜂演化出欺骗性是非常罕见的。在雌雄同株的高榕隐头果内,共存着一种传粉榕小蜂Eupristina altissima和一种欺骗性的小蜂Eupristina sp.,两种小蜂在雌花期进入隐头果内繁殖,但有不同的繁殖特点。对比研究了两种小蜂从成虫羽化到产卵和传粉这个阶段的雌蜂个体大小、孕卵量及繁殖差异,结果表明:羽化期两种雌蜂的平均个体小,经飞行小个体的雌蜂易死亡,大个体雌蜂到达接受树,但通过苞片通道,一些个体较大的传粉榕小蜂被夹死导致进入果腔的雌蜂相对小,而欺骗性小蜂易通过苞片以至进入果腔的雌蜂个体较大。两种未产卵雌蜂均表现为个体大者孕卵量较多,但两种雌蜂的平均孕卵量没有差异。即使有充足雌花资源产卵,两种雌蜂均未产完所有卵,产卵后两种雌蜂卵巢中的卵量均显著减少,遗留下的卵量两种小蜂间没有差异。传粉榕小蜂只有部分个体传完所携带花粉,并表现为传粉越成功的雌蜂,产卵越多。存在种内竞争时,两种小蜂的产卵量均减少,传粉榕小蜂的传粉效率也降低。在种间竞争背景下,欺骗性小蜂产卵更成功,传粉榕小蜂的产卵和传粉量均受到极大抑制。研究结果说明雌花期隐头果内传粉榕小蜂只适量利用雌花资源产卵繁殖后代,更有效地传粉繁殖榕树种子,这可能是维持榕-蜂互惠系统稳定共存的重要机制之一;欺骗者稳定存在需降低与传粉者的直接竞争,而欺骗者和传粉者分散在不同果内,甚至是不同的树上繁殖是理想的繁殖策略。  相似文献   

15.
Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium – a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls, male wasps have the additional burden of detecting conspecific females that are “hidden” behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons.In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment.  相似文献   

16.
J.C. Moore 《Animal behaviour》2003,66(6):1101-1107
Female pollinating fig wasp (foundress) reproduction is often reduced when multiple foundresses oviposit in figs, owing to oviposition site limitation or the extra time spent searching for unused sites. In species where foundresses cannot re-emerge from figs (meaning that all reproduction takes place in a single fig), they might therefore be expected to defend sites from competitors. For the first time, we explicitly documented defence by foundresses. Larger Platyscapa awekei foundresses (pollinators of Ficus salicifolia) in two-foundress figs prevented smaller foundresses from ovipositing by holding them in their mandibles while ovipositing themselves, and deposited the same number of eggs as when ovipositing in isolation. Smaller foundresses deposited around 30% fewer eggs. The onset of defence in two-foundress figs depended on larger foundress body size, implying that they made decisions based on their own size relative to the population mean (i.e. the average probability of being successful). Defence was less common in three- than in two-foundress figs, probably because the presence of a third competitor reduced the benefits accrued. We discuss why foundresses use such tactics, and identify other species in which defence may occur. Qualitative behavioural observations and comparative morphology suggest that defence is common, occurring in four pollinator genera. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   

17.
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects.  相似文献   

18.
在西双版纳,分别统计了对叶榕(Ficus hispida)雌花期雌雄果的进蜂量和花后期雌雄果繁殖的多个特征值,以此来探讨自然条件下,影响对叶榕及其传粉榕小蜂(Ceratosolen solmsi marchali)繁殖的因素。结果表明:单果内有效进蜂数量是影响种子生产和传粉榕小蜂繁殖的首要因素,而雌花期进果的传粉榕小蜂并不是都能全部进入果腔传粉或产卵,大部分蜂还未进到果腔就被夹死在顶生苞片层的通道里,能进入雌果内传粉的榕小蜂为(2.72±2.04)只·果-1,约占总进蜂量的52%;而在雄果里,能进入果腔的蜂量只有(2.08±1.65)只·果-1,占35%左右。由于雌果内的雌花显著比雄果内的雌花多,结合单果进蜂量雌多雄少的格局,最终单果生产的种子数量 (1 891.63 ± 471.53)比传粉榕小蜂的数量 (367.20 ± 208.02) 多5倍有余。在雌果里,供给传粉的雌花数量与所生产的种子数量之间呈显著的正相关,而没有接受到花粉或不能正常受精的雌花数量与种子数量呈显著的负相关。雄果不仅生产花粉,也是传粉榕小蜂繁殖的场所,在相关于传粉榕小蜂自身繁殖力的因子中,传粉榕小蜂产卵制造的瘿花数量对其种群数量有最大的影响;影响次之的是发育过程中死亡的个体数量,它可降低30%左右的传粉榕小蜂数量;影响排在第三位的是寄主的雌花数量。此外,3类非传粉者的存在,单果内平均可减少30多只传粉小蜂。  相似文献   

19.
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.  相似文献   

20.
Fig‐pollinating wasps (Agaonidae) only reproduce within fig tree inflorescences (figs). Agaonid offspring sex ratios are usually female‐biased and often concur with local mate competition theory (LMC). LMC predicts less female‐bias when several foundresses reproduce in a fig due to reduced relatedness among intra‐sexually competing male offspring. Clutch size, the offspring produced by each foundress, is a strong predictor of agaonid sex ratios and correlates negatively with foundress number. However, clutch size variation can result from several processes including egg load (eggs within a foundress), competition among foundresses and oviposition site limitation, each of which can be used as a sex allocation cue. We introduced into individual Ficus racemosa figs single Ceratosolen fusciceps foundresses and allowed each to oviposit from zero to five hours thus variably reducing their eggs‐loads and then introduced each wasp individually into a second fig. Offspring sex ratio (proportion males) in second figs correlated negatively with clutch size, with males produced even in very small clutches. Ceratosolen fusciceps lay mainly male eggs first and then female eggs. Our results demonstrate that foundresses do not generally lay or attempt to lay a ‘fixed’ number of males, but do ‘reset to zero’ their sex allocation strategy on entering a second fig. With decreasing clutch size, gall failure increased, probably due to reduced pollen. We conclude that C. fusciceps foundresses can use their own egg loads as a cue to facultatively adjust their offspring sex ratios and that foundresses may also produce more ‘insurance’ males when they can predict increasing rates of offspring mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号