首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Most pollinator fig wasps are host plant specific, with each species only breeding in the figs of one fig tree species, but increasing numbers of species are known to be pollinated by more than one fig wasp, and in rare instances host switching can result in Ficus species sharing pollinators. In this study, we examined factors facilitating observed host switching at Xishuangbanna in Southwestern (SW) China, where Ficus squamosa is at the northern edge of its range and lacks the fig wasps that pollinate it elsewhere, and its figs are colonized by a Ceratosolen pollinator that routinely breeds in figs of F. heterostyla .Methods We recorded the habitat preferences of F. squamosa and F. heterostyla at Xishuangbanna, and compared characteristics such as fig size, location and colour at receptive phase. Furthermore, the vegetative and reproductive phenologies in the populations of F. squamosa and F. heterostyla were recorded weekly at Xishuangbanna Tropical Botanical Garden for 1 year.Important findings Ficus squamosa is a shrub found near fast-flowing rivers, F. heterostyla is a small tree of disturbed forest edges. Although preferring different habitats, they can be found growing close together. Both species have figs located at or near ground level, but they differ in size when pollinated. Fig production in F. squamosa was concentrated in the colder months. F. heterostyla produced more figs in summer but had some throughout the year. The absence of its normal pollinators, in combination with similarly located figs and partially complementary fruiting patterns appear to have facilitated colonization of F. squamosa by the routine pollinator of F. heterostyla. The figs probably also share similar attractant volatiles. This host switching suggests one mechanism whereby fig trees can acquire new pollinators and emphasizes the likely significance of edges of ranges in the genesis of novel fig tree–fig wasp relationships.  相似文献   

2.
Fig wasps (Chalcidoidea, Agaonidae, Agaoninae) are the exclusive pollinators of fig trees (Ficus spp., Moraceae). Fig development on the African fig tree, F. burtt-davyi, is normally synchronised on individual trees, but not between trees. Consequently the females of each generation of the pollinating species (Elisabethiella baijnathi) have to disperse to other trees to find ‘receptive’ figs which are suitable for oviposition. This paper examines this aspect of fig - fig wasp biology. The flight speed of insects is closely linked to their size, and directional flight is difficult for small insects, such as fig wasps, in all but the lightest of winds. We investigated the movements of fig wasps between trees using sticky traps placed around fig trees or near cotton bags containing figs. Away from the trees, the densities of flying wasps at different heights was also determined. When the wasps disperse from their natal figs they take off near-vertically. They are unable to exert directional control once they enter the air column and are subsequently blown downwind. Near receptive host trees the wasps appear to lose height and then fly upwind at speeds of around 25 cm/sec.  相似文献   

3.
Insect pollination is the main strategy used by Angiosperm plants to transport pollen to another individual. The interaction between entomophilous plants and their pollinators is often mutualistic, with many species pairs being interdependent. In obligate pollination mutualism, the plant relies on its partner for pollination, whereas the pollen vector relies on plant resources. In the mutualism between Ficus (Moraceae) and the fig wasps (Hymenoptera, Agaonidae), the plant provides oviposition sites to its exclusive pollinator, which has an extremely short lifespan (a maximum lifespan of few days). This study examined how fig trees maintain their associated pollinator populations by conducting a 45-month phenological survey of 27 and 64 trees belonging to the species Ficus caulocarpa and F. subpisocarpa in Taipei, Taiwan. The observations indicated that the trees produce figs year-round with no clear seasonal pattern, and are not affected by meteorological factors. On average, about 30% of the trees of both species were bearing figs during the survey. The duration of the fig development was longer during the winter-spring period than during the summer-fall period. The trees displayed strong asynchrony among trees in the population but each crop was synchronous within a tree. However, after wasp emergence, crops lost their synchrony with part of the figs ripening within few days whereas some figs only ripened eight weeks later for F. subpisocarpa and four weeks later for F. caulocarpa. This study also discusses the implications of fig frugivory and mutualism.  相似文献   

4.
Birds and figs are conspicuous members of the tropical and subtropical ecosystems. Because they are easily observed and very speciose, their relationships have been well studied in many areas, and the figs are considered a keystone resource for many bird species which are efficient fig seed dispersers. Taiwan has a relatively high endemism rate for many taxa (17% of bird species) but because of its high human population density, most lowland habitats are heavily developed, of which much of it covered by dense urban habitation. To establish the importance of urban figs for birds, we focused our surveys mostly on three common urban fig species (Ficus caulocarpa, F. microcarpa and F. subpisocarpa). We observed trees with ripening figs from July 2013 to December 2016 in order to determine the composition of the fig-consuming bird community. In addition, we added all the information available in the scientific literature and birdwatchers' observations which we could find. In total, we observed 42 bird species consuming 18 fig species. The bird diversity in urban areas was non-negligible even during winter. Therefore, there are two reasons why figs are important for Taiwan's bird avifauna: in cities, the tree diversity is generally low so that figs provide a stable food resource; and since figs are fruiting all year-round, they are one of the few reliable resources available during winter when many migrant birds overwinter in Taiwan. Already crucial for many species in tropical and subtropical forests, fig trees may also be essential for urban birds in tropical and subtropical regions.  相似文献   

5.
Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea''s pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs.  相似文献   

6.
Like other mutualisms, pollination mutualisms attract parasites, as well as opportunistic and specialist predators of the pollinators and parasites. These associated species influence the evolutionary dynamics of pairwise mutualisms. Predatory ants are frequent associates of pollination mutualisms, but their effects on the complex interactions between plants, pollinators and parasites have not yet been clearly established, even in the case of the well-described obligate interaction between figs and fig wasps. We attempted to quantify such effects for ants associated with three fig species, two dioecious ( Ficus condensa [Bruneï], F . carica [France]) and one monoecious ( F . racemosa [India]). In all these cases, ant presence on a fig tree strongly reduced the number of parasitic wasps on the figs. Experimental exclusion of ants resulted in an increase in the number of non-pollinating fig wasps on F . condensa and F . racemosa . Experimental ant supplementation led to a decrease in the number of non-pollinating fig wasps on F . carica . Moreover, on F . condensa , the level of reduction of the number of parasitic wasps depended on the number and identity of the ants. On F . carica , non-pollinating fig wasps even avoided trees occupied by the dominant predatory ant. The consistency of the effect of ants in these three cases, representing a geographically, ecologically, and taxonomically broad sample of figs, argues for the generality of the effect we observed. Because reduction of parasitism benefits the pollinator, ants may be considered as indirect mutualists of plants and pollinators in the network of complex interactions supported by fig trees.  相似文献   

7.
Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4–5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.  相似文献   

8.
Flowering phenology is central to the ecology and evolution of most flowering plants. In highly-specific nursery pollination systems, such as that involving fig trees (Ficus species) and fig wasps (Agaonidae), any mismatch in timing has serious consequences because the plants must balance seed production with maintenance of their pollinator populations. Most fig trees are found in tropical or subtropical habitats, but the dioecious Chinese Ficus tikoua has a more northerly distribution. We monitored how its fruiting phenology has adapted in response to a highly seasonal environment. Male trees (where fig wasps reproduce) had one to three crops annually, whereas many seed-producing female trees produced only one fig crop. The timing of release of Ceratosolen fig wasps from male figs in late May and June was synchronized with the presence of receptive figs on female trees, at a time when there were few receptive figs on male trees, thereby ensuring seed set while allowing remnant pollinator populations to persist. F. tikoua phenology has converged with those of other (unrelated) northern Ficus species, but there are differences. Unlike F. carica in Europe, all F. tikoua male figs contain male flowers, and unlike F. pumila in China, but like F. carica, it is the second annual generation of adult wasps that pollinate female figs. The phenologies of all three temperate fig trees generate annual bottlenecks in the size of pollinator populations and for female F. tikoua also a shortage of fig wasps that results in many figs failing to be pollinated.  相似文献   

9.
Ficus burtt-davyi, like most other fig species (Ficus, Moraceae), is exclusively pollinated by its own unique species of fig wasp, in this caseElisabethiella baijnathi (Chalcidoidea, Agaonidae). Because fig crop development on any one tree is usually synchronised, the small and short-lived female wasps have to migrate and find other trees bearing figs which are at suitable stage of development for oviposition. However, the likelihood of successful location and subsequent arrival at a new host tree is dependent on distance and the effect of environmental factors such as wind and temperature. This study examines the relationship between ambient temperatures and the timing of fig wasps emergence from their natal figs and the commencement of their dispersal flight. The behaviour of the wasps arriving at figs which were ready to be pollinated was also examined. The female wasps did not appear to distinguish between the figs and other parts of the tree when in flight. However, after landing on the tree their search for figs was more directed as they visited more figs than leaves. Short-range recognition of figs appears to be by contact chemo-reception, but the wasps showed a preference for entering figs which did not already contain a female wasp.  相似文献   

10.
The relationship between plants and ants is often mediated by the presence of extrafloral nectaries (EFNs) that attract ants and provide rewards by protecting plants from herbivores or parasites. Ficus trees (Moraceae) and their pollinators (Hymenoptera: Agaonidae) are parasitized by many nonpollinating fig wasp species (Hymenoptera: Chalcidoidea) that decrease the reproductive output of the mutualistic partners. Previous studies have shown that ants living on and patrolling Ficus species can efficiently deter parasitic wasps. The aim of this study was to verify the presence of EFNs on figs of Ficus benguetensis and test the hypothetical protection service provided by ants. Figs in different developmental stages were collected from Fu-Yang Eco Park, Taipei, Taiwan. Sugars on the fig surface were collected and analyzed through high-performance anion-exchange chromatography. Moreover, ants were excluded from the figs to determine the effect of ants on the nonpollinating fig wasps. We identified three oligosaccharides whose relative proportions varied with the fig developmental phase. In addition, results showed that the ant-excluded figs were heavily parasitized and produced three times less pollinators than did the control figs. Finally, the specific interactions of Ficus benguetensis with ants and the relationship between figs and ants in general are discussed.  相似文献   

11.
Fig trees (Ficus) are a species-rich group of mainly tropical and subtropical plants that are of ecological importance because of the large numbers of vertebrates that utilise their figs for food. Factors limiting their distributions to warmer regions are still poorly understood, but are likely to include factors linked to their specialised pollination biology, because each Ficus species is dependent on one or a small number of host-specific fig wasps (Agaonidae) for pollination. Adult fig wasps are short-lived, but some species are capable of dispersing extremely long distances to pollinate their hosts. Close to its northern range limit we investigated the phenology of Ficus virens, the monoecious fig tree that reaches furthest north in China. Relatively few trees produced any figs, and very few retained figs throughout the winter. Despite this, new crops produced in spring were pollinated, with seasonally migrant pollinators from plants growing further south the most likely pollen vectors. An inability to initiate new crops at low temperatures may limit the distribution of monoecious fig trees to warmer areas.  相似文献   

12.
Fig trees are pollinated by wasp mutualists, whose larvae consume some of the plant's ovaries. Many fig species (350+) are gynodioecious, whereby pollinators generally develop in the figs of ‘male’ trees and seeds generally in the ‘females.’ Pollinators usually cannot reproduce in ‘female’ figs at all because their ovipositors cannot penetrate the long flower styles to gall the ovaries. Many non-pollinating fig wasp (NPFW) species also only reproduce in figs. These wasps can be either phytophagous gallers or parasites of other wasps. The lack of pollinators in female figs may thus constrain or benefit different NPFWs through host absence or relaxed competition. To determine the rates of wasp occurrence and abundance we surveyed 11 dioecious fig species on Hainan Island, China, and performed subsequent experiments with Ficus tinctoria subsp. gibbosa to identify the trophic relationships between NPFWs that enable development in female syconia. We found NPFWs naturally occurring in the females of Ficus auriculata, Ficus hainanensis and F. tinctoria subsp. gibbosa. Because pollinators occurred only in male syconia, when NPFWs also occurred in female syconia, overall there were more wasps in male than in female figs. Species occurrence concurred with experimental data, which showed that at least one phytophagous galler NPFW is essential to enable multiple wasp species to coexist within a female fig. Individuals of galler NPFW species present in both male and female figs of the same fig species were more abundant in females than in males, consistent with relaxed competition due to the absence of pollinator. However, these wasps replaced pollinators on a fewer than one-to-one basis, inferring that other unknown mechanisms prevent the widespread exploitation by wasps of female figs. Because some NPFW species may use the holes chewed by pollinator males to escape from their natal fig, we suggest that dispersal factors could be involved.  相似文献   

13.
The interaction between Ficus spp. (Moraceae) and their pollinating wasps (Chalcidoidae: Agaonidae) is a highly co-evolved mutualism. Approximately half of all fig species are monoecious and produce a mixture of wasps and seeds within the same fig. In functionally dioecious fig trees male and female functions are separate. Figs on male trees produce wasps and pollen, whereas figs borne on female plants produce only seeds. Dioecious fig phenology provides an excellent opportunity to investigate the effect of sexual specialization on the obligate fig?Cfig wasp interaction and the non-pollinators associated with the system. Here we describe laboratory studies of phenological variation between two sexes in terms of vegetative growth and fig production in a dioecious fig tree Ficus montana. We also describe reproductive output in terms of wasp production in males and seeds in females. Intrasexual asynchrony was observed for the plants, with synchrony between the sexes with year-round production of figs. Male plants grew more rapidly, but leaf phenology was very similar. Crop sizes and development times were the same for males and females. Seasonal effects were strong for leaf phenology and fig initiation, but had a very limited effect on fig composition. The results show that the phenological differences described for other dioecious figs do not apply to all species.  相似文献   

14.
榕-蜂共生系统是桑科榕属(Ficus)植物与传粉榕小蜂专一互惠形成的生态学关系。但是,也有一些非传粉的小蜂出现在这个系统中,对榕-蜂共生系统可能产生较大的影响。西双版纳的聚果榕(Ficus racemosa)树上主要有5种非传粉小蜂,分别在榕果发育的不同阶段从果外向果内产卵。在传粉榕小蜂进果之前的花前期,Platyneura testaceApocrypta sp.和P. mayri这3种非传粉小蜂先后到果外产卵繁殖后代,对榕-蜂共生系统造成显著影响,尤其是影响传粉榕小蜂的繁殖。在传粉榕小蜂进果之后的间花期,P. mayriA. westwoodiP. agraensis这3种非传粉小蜂相继到果外产卵,它们虽然能减少种子形成和传粉榕小蜂繁殖的数量,但最终没有对榕-蜂共生系统造成显著的影响。造瘿类的P. mayri可在花前期和间花期产卵繁殖,在花前期产卵时它主要是影响传粉榕小蜂的繁殖,而在间花期产卵时它则更多地是影响种子的生产。  相似文献   

15.
为了探讨榕树隐头果的发育期、性别、大小等外部特征对传粉榕小蜂选择的影响,采取人为控制雌花期的方法,对鸡嗉子榕(Ficus sermicordata)及其传粉榕小蜂(Ceratosolen gravelyi)的选择行为进行研究。结果表明,在隐头花序发育到雌花期后,如果阻止传粉小蜂进入,隐头果会继续生长。直径较小的雌果和雄果的进蜂量较多,且在雌雄果同时存在时,小蜂仍然会选择进入雌果,但进蜂量显著低于雄果。小蜂优先选择进入雌花期前期的隐头花序,雌雄果皆有此特点。对于相同发育期的隐头果,果径和进蜂量呈正相关关系,说明对于相同发育期的隐头果,小蜂更倾向于进入较大的隐头果。因此,真正控制小蜂行为的是隐头花序所处的发育期,以及不同发育期所产生的化学挥发物,而非隐头果直径大小。这为进一步研究榕-蜂系统的稳定机制提供依据。  相似文献   

16.
1. Facilitation is recorded from diverse plant–insect interactions, including pollination and herbivory. 2. The significance of facilitation resulting from the behavior of males of multiple fig wasp species inside figs was investigated. Female fig wasps emerge from natal figs via exit holes dug by males, especially male pollinators. When no males are present, the females struggle to escape and may die. 3. Ficus microcarpa L. is a widely‐established invasive fig tree from Southeast Asia. Its pollinator is absent in South Africa, so the tree cannot reproduce, but two Asian non‐pollinating fig wasps (NPFW) Walkerella microcarpae and Odontofroggatia galili occupy its figs. Abundance patterns of the two NPFW and the proportion of male‐free figs in South Africa, Spain (where the pollinator is introduced), and in China, where the native fig wasp community is diverse, were compared to determine the consequences of reduced species richness for insect survival. 4. Female fig wasps in male‐free figs were found to be trapped, and small clutch sizes contributed to the absence of males in both species. The presence of pollinators in Spain allowed most NPFW to develop in figs containing males. Far more male‐free figs were present in South Africa, elevating mortality rates among female NPFW. Facilitation of female release by males of other NPFW species nonetheless benefitted the rarer species. 5. Selection pressures in South Africa currently favour greater aggregation of NPFW offspring and/or less female biased sex ratios.  相似文献   

17.
1. Fig trees require host‐specific agaonid fig wasps for pollination, but their figs also support numerous non‐pollinating fig wasps (NPFW) that gall fig tissues or develop as parasitoids. 2. Ficus microcarpa L. is widely naturalised outside its native range and the most invasive fig tree species. Seed predators are widely used for the biological control of invasive plants, but no obligate seed predatory (as opposed to ovule or fig wall galling) NPFW have been recorded previously from any fig trees. 3. Philotrypesis NPFW are usually regarded as parasitoids or ‘inquilines’ (parasitoids that also eat plant material) of pollinator fig wasps, but the present study provides evidence that Philotrypesis taiwanensis, a NPFW associated with F. microcarpa, is an obligate seed predator: (i) adults emerge from seeds of typical appearance, with a surrounding elaiosome; (ii) it shows no preference for figs occupied by fig wasp species, other than the pollinator; (iii) it only develops in figs that contain pollinated ovules, avoiding figs occupied by an agaonid that fails to pollinate; (iv) larvae are distributed in layers where seeds are concentrated and (v) it has a negative impact on seed but not pollinator offspring numbers. 4. Philotrypesis is a large genus, and further species are likely to be seed predators.  相似文献   

18.
The fig tree, Ficus curtipes, hosts an obligate pollinating wasp, an undescribed Eupristina sp., but can also be pollinated by two inquiline (living in the burrow, nest, gall, or other habitation of another animal) wasps, Diaziella yangi and an undescribed Lipothymus sp. The two inquilines are unable to independently induce galls and depend on the galls induced by the obligate pollinator for reproduction and, therefore, normally enter receptive F. curtipes figs colonised by the obligate pollinators. However, sometimes the inquilines also enter figs that are not colonised by the pollinators, despite consequent reproductive failure. It is still unknown which signal(s) the inquilines use in entering the colonised and non-colonised figs. We conducted behavioural experiments to investigate several possible signals utilised by the inquilines in entering their host receptive figs. Our investigation showed that both inquiline species enter the receptive F. curtipes figs in response to the body odours of the obligate wasps and one of the main compounds emitted by the figs, 6-methyl-5-hepten-2-one. The compound was not found in the pollinator body odours, suggesting that the two inquiline wasps can utilise two signals to enter their host figs, which is significant for the evolution of the fig-fig wasp system. These inquilines could evolve to become mutualists of the figs if they evolve the ability to independently gall fig flowers; there is, however, another possibility that a monoecious Ficus species hosting such inquilines may evolve into a dioecious one if these inquilines cannot evolve the above-mentioned ability. Additionally, this finding provides evidence for the evolution of chemical communication between plants and insects.  相似文献   

19.
Insects show a multitude of symbiotic interactions that may vary in degree of specialization and structure. Gall-inducing insects and their parasitoids are thought to be relatively specialized organisms, but despite their ecological importance, the organization and structure of the interactions they establish with their hosts has seldom been investigated in tropical communities. Non-pollinating fig wasps (NPFW) are particularly interesting organisms for the study of ecological networks because most species strictly develop their offspring within fig inflorescences, and show a multitude of life history strategies. They can be gall-makers, cleptoparasites or parasitoids of pollinating or of other non-pollinating fig wasps. Here we analysed a set of non-pollinating fig wasp communities associated with six species of Ficus section Americanae over a wide area. This allowed us to investigate patterns of specialization in a diverse community composed of monophagous and polyphagous species. We observed that most NPFW species were cleptoparasites and parasitoids, colonizing figs several days after oviposition by pollinators. Most species that occurred in more than one host were much more abundant in a single preferential host, suggesting specialization. The food web established between wasps and figs shows structural properties that are typical of specific antagonistic relationships, especially of endophagous insect networks. Two species that occurred in all available hosts were highly abundant in the network, suggesting that in some cases generalized species can be more competitive than strict specialists. The Neotropical and, to a lesser extent, Afrotropical NPFW communities seem to be more generalized than other NPFW communities. However, evidence of host sharing in the Old World is quite limited, since most studies have focused on particular taxonomic groups (genera) of wasps instead of sampling the whole NPFW community. Moreover, the lack of quantitative information in previous studies prevents us from detecting patterns of host preferences in polyphagous species.  相似文献   

20.
Molecular techniques are revealing increasing numbers of morphologically similar but co-existing cryptic species, challenging the niche theory. To understand the co-existence mechanism, we studied phenologies of morphologically similar species of fig wasps that pollinate the creeping fig (F. pumila) in eastern China. We compared phenologies of fig wasp emergence and host flowering at sites where one or both pollinators were present. At the site where both pollinators were present, we used sticky traps to capture the emerged fig wasps and identified species identity using mitochondrial DNA COI gene. We also genotyped F. pumila individuals of the three sites using polymorphic microsatellites to detect whether the host populations were differentiated. Male F. pumila produced two major crops annually, with figs receptive in spring and summer. A small partial third crop of receptive figs occurred in the autumn, but few of the second crop figs matured at that time. Hence, few pollinators were available to enter third crop figs and they mostly aborted, resulting in two generations of pollinating wasps each year, plus a partial third generation. Receptive figs were produced on male plants in spring and summer, timed to coincide with the release of short-lived adult pollinators from the same individual plants. Most plants were pollinated by a single species. Plants pollinated by Wiebesia sp. 1 released wasps earlier than those pollinated by Wiebesia sp. 3, with little overlap. Plants occupied by different pollinators were not spatially separated, nor genetically distinct. Our findings show that these differences created mismatches with the flight periods of the other Wiebesia species, largely ‘reserving’ individual plants for the resident pollinator species. This pre-emptive competitive displacement may prevent long term co-existence of the two pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号