首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PurposeThe purpose of this work is to compare the positioning accuracy achieved by three different imaging techniques and planar vs. CBCT imaging for two common IGRT indications.MethodsA collective of prostate cancer and head-and-neck cancer patients treated at our institution during the year 2013 was retrospectively analyzed. For all treatment fractions (3078 in total), the kind of acquired set-up image and the performed couch shift before treatment were assessed. The distribution of couch corrections was compared for three different imaging systems available at our institution: the treatment beam line operating at 6 MV, a dedicated imaging beam line of nominally 1 MV, and the kVision system at 70–121 kV. Shifts were analyzed for planar and cone-beam CT images. Based on the set-up corrections, CTV to PTV expansion margins were calculated.ResultsThe difference in set-up corrections performed for the three energies and both techniques (planar vs. CBCT) was not significant for head-and-neck cancer patients. For prostate cancer all shifts had equal variance. Averages ranged from −0.7 to +0.7 mm. The set-up margins calculated on the basis of the observed shifts are 4.0 mm (AP) and 3.8 mm (SI, LR) for the head-and-neck PTV and 6.6 mm (SI), 6.7 mm (AP) and 7.9 mm (LR) for the prostate cancer patients.ConclusionsFor three different linac-based imaging energies and planar/CBCT imaging, no relevant differences in set-up shifts were observed. The suggested set-up margins for these indications are of the order of 4 mm for head-and-neck and 6–8 mm for prostate treatment.  相似文献   

2.
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.  相似文献   

3.
PurposeTo evaluate the accuracy of an intra-modality trans-abdominal ultrasound (TA-US) device against soft-tissue based Cone-Beam Computed tomography (CBCT) registration for prostate and post-prostatectomy pre-treatment positioning.MethodsThe differences between CBCT and US shifts were calculated on 25 prostate cancer patients (cohort A) and 11 post-prostatectomy patients (cohort B), resulting in 284 and 106 paired shifts for cohorts A and B, respectively. As a second step, a corrective method was applied to the US registration results to decrease the systematic shifts observed between TA-US and CBCT results. This method consisted of subtracting the mean difference obtained between US and CBCT registration results during the first 3 sessions from the US registration results of the subsequent sessions. Inter-operator registration variability (IOV) was also investigated for both modalities.ResultsAfter initial review, about 20% of the US images were excluded because of insufficient quality. The average differences between US and CBCT were: 2.8 ± 4.1 mm, −0.9 ± 4.2 mm, 0.4 ± 3.4 mm for cohort A and 1.3 ± 5.0 mm, −2.3 ± 4.6 mm, 0.5 ± 2.9 mm for cohort B, in the anterior-posterior (AP), superior-inferior (SI) and lateral (LR) directions, respectively. After applying the corrective method, only the differences in the AP direction remained significant (p < 0.05). The IOV values were between 0.6–2.0 mm and 2.1–3.5 mm for the CBCT and TA-US modalities, respectively.ConclusionsBased on the obtained results and on the image quality, the TA-US imaging modality is not safely interchangeable with CBCT for pre-treatment repositioning. Treatment margins adaptation based on the correction of the systematic shifts should be considered.  相似文献   

4.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

5.
Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.  相似文献   

6.
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).  相似文献   

7.
A robotic couch capable of six degrees of freedom (6-DoF) of motion was introduced for state-of-the-art radiation therapy. Patient treatment requires precise quality assurance (QA) of 6-DoF. Unfortunately, conventional methods do not provide the requisite accuracy and precision. Therefore, we developed a high-precision automated QA system using a visual tracking system (VTS). The VTS comprises four motion-sensing cameras, a cube with infrared reflective markers. To acquire data in treatment room coordinates, a transformation matrix from VTS coordinates to treatment room coordinates was determined.The mean error and standard deviation of linear and rotational motions, as well as couch sagging were analyzed from continuously acquired images in the moving couch. The accuracy of VTS was 0.024 mm deviation for the sinusoidal motion, and the accuracy of the transformation matrix was 0.02 mm. In a cross-comparison, the difference between Laser Tracker (FARO) measurements was 0.14 ± 0.12 mm for translation and 0.032 ± 0.026° on average for yaw rotation. The new system provides QA of yaw, pitch and roll motion as well as sagging of the couch and sub-millimeter/degree accuracy together with precision.  相似文献   

8.
9.
PurposeTo compare the planning target volume (PTV) margins needed for prostate patients who have used hydrogel spacer or rectal balloon during proton treatments.MethodTotal of 190 prostate patients treated with proton therapy during 2017 were selected for this study. Of these patients, 96 had hydrogel spacer injection and 94 patients had only rectal balloons insertion. All patients had implanted gold markers inside the prostate for daily target alignment. Post-treatment radigraphs were obtained to evaluate prostate intrafraction motion. The systematic and random components of patient setup residual error and prostate intrafraction motion error were obtained. PTV margins were calculated using the van Herk formula for both patient groups.ResultsFor setup residual error, the mean values in the superior-inferior (SI) direction and the variances in the left–right (LR) direction were statistically different between the two groups. For intrafraction motion, there were significant differences of the mean values in the SI direction and of the variances in both LR and anterior-posterior (AP) directions. The population PTV margins for hydrogel spacer group were 2.6 mm, 3.3 mm, and 1.6 mm in LR, SI, AP directions, respectively. For the rectal balloon group, the PTV margins were 2.1 mm, 3.1 mm, and 2.0 mm in LR, SI, AP directions, respectively.ConclusionStatistically significant differences were observed in the patient setup and prostate intrafraction motion errors of the two patient groups. However, under the current protocol of bladder preparation and daily marker-based x-ray image-guidance, population PTV margins were comparable between the two patient groups.  相似文献   

10.
PurposeIn volumetric-modulated arc therapy (VMAT), field configurations such as couch or arc angles are defined manually or using a template. A field configuration is reselected through trial-and-error in the case of undesirable resultant planning. To efficiently plan for desirable quality, configurations should be assessed before dose calculation. Design of experiments (DoE) is an optimization technique that efficiently reveals the influence of inputs on outputs. We developed an original tool using DoE to determine the field configuration selection and evaluated the efficacy of this workflow for clinical practice.MethodsComputed-tomography scans of 17 patients and target structures were acquired retrospectively from a brain tumor treated using a dual-arc VMAT plan. The configurations of the couch, arc, collimator angles, field sizes, and beam energy were determined using DoE. The resultant dose distributions obtained using the DoE-selected configuration were compared with the clinical plan.ResultsThe averaged differences between the DoE and clinical plan for 17 patients of doses to 50% of the planning target volume (PTV-D50%), Brain-D60%, Brain-D30%, Brain stem-D1%, Left eye-D1%, Right eye-D1%, Optic nerve-D1%, and Chiasm-D1% were 0.2 ± 0.5%, −1.0 ± 4.6%, 1.7 ± 3.5%, −2.5 ± 6.7%, −0.2 ± 4.9%, −1.2 ± 3.6%, −2.8 ± 7.3%, and −2.1 ± 5.7%, respectively.ConclusionsOur optimization workflow obtained using DoE for various field configurations provided the same or slightly superior plan quality compared with that created by experts. This process is feasible for clinical practice and will efficiently improve treatment quality while removing the influence of the planner’s experience.  相似文献   

11.
PurposeDue to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac.Material and MethodsDual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch.ResultsMLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation.2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis.The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV).ConclusionThe dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.  相似文献   

12.
Low estrus detection rates (>50%) are associated to extended calving intervals, low economic profit and reduced longevity in Holstein dairy cows. The objective of this study was to evaluate the accuracy of infrared thermography and behavioral biometrics combined as potential estrus alerts in naturally (not induced) cycling dairy cows housed in a tie-stall barn. Eighteen first lactation cows were subjected to transrectal ultrasonography to determine spontaneous ovulation. The dominant follicle (DF) disappearance was used retrospectively as an indirect indicator of ovulation, and to establish the estrus period (48–24 h prior the DF disappearance). Raw skin temperature (Raw IR) and residual skin temperature (Res IR) were recorded using an infrared camera at the Vulva area with the tail (Vtail), Vulva area without the tail (Vnotail), and Vulva’s external lips (Vlips) at AM and PM milking from Day 14 until two days after ovulation was confirmed. Behavioral biometrics were recorded on the same schedule as infrared scan. Behavioral biometrics included large hip movements (L-hip), small hip movements (S-hip), large tail movements and small tail movements to compare behavioral changes between estrus and nonestrus periods. Significant increases in Raw IR skin temperature were observed two days prior to ovulation (Vtail; 35.93 ± 0.27 °C, Vnotail; 35.59 ± 0.27 °C, and Vlips; 35.35 ± 0.27 °C) compared to d −5 (Proestrus; Vtail; 35.29 ± 0.27 °C, Vnotail; 34.93 ± 0.31 °C, and Vlips; 34.68 ± 0.27 °C). No significant changes were found for behavioral parameters with the exception of S-hip movements, which increased at two days before ovulation (d −2; 11.13 ± 1.44 Events/5min) compared to d −5 (7.30 ± 1.02 Events/5min). To evaluate the accuracy of thermal and behavioral biometrics, receiver operating characteristic curve analysis was performed using Youden index (YJ), diagnostic odds ratio, positive likelihood ratio (LR+), Sensitivity, Specificity and Positive predicted value to score the estrus alerts. The greatest accuracy achieved using thermal parameters was for Res IR Vtail PM (YJ = 0.34) and L-hip PM (YJ = 0.27) for behavioral biometrics. Combining thermal and behavioral parameters did not improve the YJ index score but reduced the false-positive occurrence observed by increasing the diagnostic odds ratio (26.62), LR+ (12.47), Specificity (0.97) and positive predicted value (0.90) in a Res IR Vtail PM, S-hip AM, S-hip PM combination. The combination of thermal and behavioral parameters increased the accuracy of estrus detection compared to either thermal or behavioral biometrics, independently in naturally cycling cows during milking.  相似文献   

13.
Interface pressure measurement is needed to assess beds designed to prevent pressure sores, so it is therefore important to establish the accuracy of interface pressure measuring systems. In this study, the Talley SA500 pressure evaluator (with 28 mm and 100 mm sensor pads), the DIPE (with 100 mm sensor pad), and a water-filled bladder system (with 0.1 ml and 0.3 ml water) were assessed. Measurement errors were evaluated using a loading system with pressures up to 7.4 kPa (55 mm Hg) in steps of 0.9 kPa (6.9 mm Hg). All systems tested over-measured interface pressure, the error being approximately linearly proportional to the loading pressure. The repeatability for a given system was approximately constant. The mean error (± SD) (%) and repeatability (kPa) for the systems were: 28 mm Talley 12 ± 1%, ± 0.07 kPa; 100 mm Talley 15 ± 1%, ± 0.07 kPa; DIPE 27 ± 3%, ± 0.12 kPa; 0.1 ml water bladder 17 ± 1%, ± 0.13 kPa; 0.3 ml water bladder 26 ± 3%, ± 0.07 kPa. Different interfaces affected accuracy markedly, and repeatability was affected when an inhomogeneous interface was used. The study shows that the errors associated with interface pressure measurement systems can be substantial, and can vary from one system to another.  相似文献   

14.
We developed an efficient postal audit system to independently assess the delivered dose using radiophotoluminescent glass dosimeters (RPLDs) and the positional differences of fields using EBT3 film at the axial plane for intensity-modulated radiotherapy (IMRT). The audit phantom had a C-shaped target structure as a planning target volume (PTV) with four measurement points for the RPLDs and a cylindrical structure as the organ at risk (OAR) for one measurement point. The phantoms were sent to 24 institutions. Point dose measurements with a 0.6 cm3 PTW farmer chamber were also performed to justify glass dosimetry in IMRT. The measured dose with the RPLDs was compared to the calculated dose in the institution’s treatment planning system (TPS). The mean ± 1.96σ of the ratio of the measured dose with the RPLDs to the farmer chamber was 0.997 ± 0.024 with no significant difference (p = .175). The investigations demonstrated that glass dosimetry was reliable with a high measurement accuracy comparable to the chamber. The mean ± 1.96σ for the dose differences with a reference of the TPS dose for the PTV and the OAR was 0.1 ± 2.5% and −2.1 ± 17.8%, respectively. The mean ± 1.96σ for the right-left and the anterior–posterior direction was −0.9 ± 2.8 and 0.5 ± 1.4 mm, respectively. This study is the first report to justify glass dosimetry for implementation in IMRT audit in Japan. We demonstrate that our postal audit system has high accuracy with a high-level criterion of 3%/3 mm.  相似文献   

15.
Severity of aortic coarctation (CoA) is currently assessed by estimating trans-coarctation pressure drops through cardiac catheterization or echocardiography. In principle, more detailed information could be obtained non-invasively based on space- and time-resolved magnetic resonance imaging (4D flow) data. Yet the limitations of this imaging technique require testing the accuracy of 4D flow-derived hemodynamic quantities against other methodologies.With the objective of assessing the feasibility and accuracy of this non-invasive method to support the clinical diagnosis of CoA, we developed an algorithm (4DF-FEPPE) to obtain relative pressure distributions from 4D flow data by solving the Poisson pressure equation. 4DF-FEPPE was tested against results from a patient-specific fluid-structure interaction (FSI) simulation, whose patient-specific boundary conditions were prescribed based on 4D flow data. Since numerical simulations provide noise-free pressure fields on fine spatial and temporal scales, our analysis allowed to assess the uncertainties related to 4D flow noise and limited resolution.4DF-FEPPE and FSI results were compared on a series of cross-sections along the aorta. Bland-Altman analysis revealed very good agreement between the two methodologies in terms of instantaneous data at peak systole, end-diastole and time-averaged values: biases (means of differences) were +0.4 mmHg, −1.1 mmHg and +0.6 mmHg, respectively. Limits of agreement (2 SD) were ±0.978 mmHg, ±1.06 mmHg and ±1.97 mmHg, respectively. Peak-to-peak and maximum trans-coarctation pressure drops obtained with 4DF-FEPPE differed from FSI results by 0.75 mmHg and −1.34 mmHg respectively. The present study considers important validation aspects of non-invasive pressure difference estimation based on 4D flow MRI, showing the potential of this technology to be more broadly applied to the clinical practice.  相似文献   

16.
Scapular kinematics during sports performances can be recorded using skin-mounted trackers attached to the skin overlying the acromion for continuous data collection without restricting natural motions of the subject relative to medical imaging analyses limiting its use for wide-range or high-speed motions. This study aimed to describe the existence of a directional bias in the translational and rotational errors of skin-mounted trackers using a 3D magnetic resonance imaging (3D-MRI) protocol. 3D-MRI scans of the healthy right shoulders of 19 males were acquired in 12 arm positions. The relative transformation of the scapular configuration determined to be the measurement error, as recorded by the configuration of the small cuboid imitating a skin-mounted tracker relative to the actual scapular configuration measured by the voxel-based registration. These measurement errors were expressed with either positive or negative values to describe the bias. Overall translational errors in the lateral, anterior, and superior directions were 3.7 ± 8.4 mm, 9.5 ± 6.4 mm, and 6.2 ± 4.6 mm, respectively. Overall rotational errors in protraction, upward rotation, and posterior tilt were 7.8 ± 8.4°, 0.2 ± 7.4°, and − 4.0 ± 7.5°, respectively. The skin-mounted tracker displayed a high probability of displacement in antero-superior (93% and 91%) directions and rotates in a protracting manner (82%) relative to the position of the underlying bone with the gradual nature of its change. The existence of the directional bias with its gradual change suggests a statistical predictability in measurement errors, which can be used to predict accurate scapular translation and rotation.  相似文献   

17.
Abstract: We designed and developed a vehicle-mounted very high frequency-based telemetry system that integrated an on-board antenna, receiver, electronic compass, Global Positioning System, computer, and Geographic Information System. The system allows users to accurately and quickly obtain fixes, estimate and confirm locations of radiomarked animals, and immediately record data into an electronic spreadsheet or database. The total cost of materials to build the system was $7,349 (United States currency). Mean error angle of 2.63 ± 12.1° (SD; range = −33.7–42.2°) and mean location error distance of 128 ± 91.3 m (SD; range = 0–408 m) suggested precision and accuracy of our system were comparable to other reported systems. Mean time to record 5 bearings/test transmitter was 6.28 ± 0.24 minutes (SE), which is the most efficient system reported to locate animals in the field. Vehicle-mounted telemetry systems like ours provide additional value to studies that involve tracking highly mobile species because investigators need not take bearings from established receiving stations and because investigators can immediately recognize bounced signals and take additional bearings and optimize accuracy of location estimates.  相似文献   

18.

Aim

To investigate the intrafraction movement of the esophagus using fiducial markers.

Background

Studies on intrafraction esophageal motion using the fiducial markers are scarce.

Materials and methods

We retrospectively analyzed patients with clinical T1N0 esophageal cancer who had received fiducial markers at our hospital between July 2007 and December 2013. Real-Time Position Management System to track the patient's respiration was used, and each patient underwent three-dimensional computed tomography of the resting expiratory and inspiratory level. We used the center of the marker to calculate the distance between the expiratory and inspiratory breath-holds, which were measured with the radiotherapy treatment planning system in three directions: left–right (LR), superior–inferior (SI), and anterior–posterior (AP). The movements at each site were compared with the Kruskal–Wallis analysis and Wilcoxon rank sum test with a Bonferroni correction.

Results

A total of 101 patients with 201 fiducial markers were included. The upper, middle and lower thoracic positions had 40, 77, and 84 markers, respectively. The mean absolute magnitudes of the shifts (standard deviation) were 0.18 (0.19)?cm, 0.68 (0.46)?cm, and 0.24 (0.24)?cm in the LR, SI, and AP directions, respectively. From the cumulative frequency distribution, we assumed that 0.35?cm LR, 0.8?cm SI, and 0.3?cm AP in the upper; 0.5?cm LR, 1.55?cm SI, and 0.55?cm AP in the middle; and 0.75?cm LR, 1.9?cm SI, and 0.95?cm AP in the lower thoracic esophagus covered 95% of the cases.

Conclusions

The internal margin based on the site of esophagus was estimated.  相似文献   

19.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

20.
PurposeTo show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system.MethodsA method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images.ResultsCompared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0 ± 1.1 mm, −1.1 mm ± 1.1, and −0.1 ± 2.2 mm, respectively, in the lateral, longitudinal, and vertical directions.ConclusionsWith dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号