首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Flavonoids are widely distributed in plants and constitute the most common polyphenolic phytoconstituents in the human diet. In this study, the in vitro inhibitory activity of 44 different flavonoids (1–44) against mushroom tyrosinase was studied, and an in silico study and type of inhibition for the most active compounds were evaluated too. Tyrosinase inhibitors block melanogenesis and take part in melanin production or distribution leading to pigmentation diseases. The in vitro study showed that quercetin was a competitive inhibitor (IC50=44.38 ± 0.13 µM) and achieved higher antityrosinase activity than the control inhibitor kojic acid. The in silico results highlight the importance of the flavonoid core with a hydroxyl at C7 as a strong contributor of interference with tyrosinase activity. According to the developed statistical model, the activity of molecules depends on hydroxylation at C3 and methylation at C8, C7, and C3 in the benzo-γ-pyrane ring of the flavonoids.  相似文献   

2.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   

3.
Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 105 M−1 at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol−1 K−1 and ΔH = −15.48 kJ mol−1) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow’s site I, located at subdomain IIA, and was well supported by the molecular modelling data.  相似文献   

4.
Loria A  Pan T 《Nucleic acids research》2001,29(9):1892-1897
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5′-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain–P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of ~0.1 µM. The C-domain–P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (~0.9 min–1 at pH 7.8) and substrates with a hairpin–loop 3′ to the cleavage site (~40 min–1). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10–500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem–loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.  相似文献   

5.
Flavonoid binding to human serum albumin   总被引:1,自引:0,他引:1  
Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow’s site I range between 3.3 × 10−6 and 3.9 × 10−5 M, at pH 7.0 and 20.0 °C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.  相似文献   

6.
Immunotherapy is a breakthrough approach for cancer treatment and prevention. By exploiting the fact that cancer cells have overexpression of tumor antigens responsible for its growth and progression, which can be identified and removed by boosting the immune system. In silico techniques have provided efficient ways for developing preventive measures to ward off cancer. Herein, we have designed a potent cytotoxic T-lymphocyte epitope to elicit a desirable immune response against carcinogenic melanoma-associated antigen-A11. Potent epitope was predicted using reliable algorithms and characterized by advanced computational avenue CABS molecular dynamics simulation, for full flexible binding with HLA-A*0201 and androgen receptor to large-scale rearrangements of the complex system. Results showed the potent immunogenic construct (KIIDLVHLL), from top epitopes using five algorithms. Molecular docking analyses showed the strong binding of epitope with HLA-A*0201 and androgen receptor with docking score of −780.6 and −641.06 kcal/mol, respectively. Molecular dynamics simulation analysis revealed strong binding of lead epitope with androgen receptor by involvement of 127 elements through atomic-model study. Full flexibility study showed stable binding of epitope with an average root mean square deviation (RMSD) 2.21 Å and maximum RMSD value of 6.48 Å in optimal cluster density area. The epitope also showed remarkable results with radius of gyration 23.0777 Å, world population coverage of 39.08% by immune epitope database, and transporter associated with antigen processing (TAP) affinity IC50 value of 2039.65 nm. Moreover, in silico cloning approach confirmed the expression and translation capacity of the construct within a suitable expression vector. The present study paves way for a potential immunogenic construct for prevention of cancer.  相似文献   

7.
A series of 1,2,3-trisubstituted indolizines (2a–2f, 3a–3d, and 4a–4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b–2d, 3a–3d, and 4a–4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a–4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16–64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.  相似文献   

8.
Increased consumption of vegetables or plant food has been associated with decreased risk of developing major chronic diseases, such as cancers, diabetes, cardiovascular diseases, and age-related functional decline. Ramie leaves are rich in phenolics and flavonoids, which have been suggested for human health benefits. Phenolic contents, flavonoid contents, phenolic compounds, and anti-cancer properties in six species of ramie leaves were analyzed by Folin-reagent method, sodium borohydride/chloranil-based assay (SBC), HPLC method and antiproliferation, cytoxicity, respectively. Antioxidant activities were measured through peroxyl radical scavenging capacity (PSC) method, oxygen radical absorbance capacity (ORAC) method, and cellular antioxidant activity (CAA). Research indicated that Boehmeria penduliflora contained the highest total phenolic content (2313.7±27.28 mg GAE/100 g FW), and flavonoid content (1682.4±27.70 mg CAE/100 g FW). Boehmeria tricuspis showed the highest PSC value (9574.8±117.63 µM vit. C equiv./100 g FW), while Boehmeria penduliflora indicated the highest ORAC value (330.44±16.88 µmol Trolox equiv./g FW). The antioxidant activities were correlated with phenolic contents and flavonoid contents. Boehmeria tricuspis had the highest antiproliferative capacity with the lowest EC50 (4.11±0.19 mg/mL). The results for the analyzed ramie for CAA were significantly different from each other (p<0.05), Boehmeria tricuspis had the highest CAA value (133.63±7.10 µmol QE/100 g). Benzoic acid, 4-coumaric acid, caffeic acid, and ferulic acid were the dominant phenolic ingredients in the ramie leaves according to HPLC analysis. Our research is the first report to study the phytochemical profiles and antioxidant activities in different species of ramie leaves for their health benefit.  相似文献   

9.
The human-to-human transmitted respiratory illness in COVID-19 affected by the pathogenic Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), which appeared in the last of December 2019 in Wuhan, China, and rapidly spread in many countries. Thereon, based on the urgent need for therapeutic molecules, we conducted in silico based docking and simulation molecular interaction studies on repurposing drugs, targeting SARS-CoV-2 spike protein. Further, the best binding energy of doxorubicin interacting with virus spike protein (PDB: 6VYB) was observed to be −6.38 kcal/mol and it was followed by exemestane and gatifloxacin. The molecular simulation dynamics analysis of doxorubicin, Reference Mean Square Deviation (RMSD), Root Mean Square fluctuation (RMSF), Radius of Gyration (Rg), and formation of hydrogen bonds plot interpretation suggested, a significant deviation and fluctuation of Doxorubicin-Spike RBD complex during the whole simulation period. The Rg analysis has stated that the Doxorubicin-Spike RBD complex was stable during 15,000–35,000 ps MDS. The results have suggested that doxorubicin could inhibit the virus spike protein and prevent the access of the SARS-CoV-2 to the host cell. Thus, in-vitro/in-vivo research on these drugs could be advantageous to evaluate significant molecules that control the COVID-19 disease.  相似文献   

10.
SARS-CoV-2, previously named 2019 novel coronavirus (2019-nCoV), has been associated with the global pandemic of acute respiratory distress syndrome. First reported in December 2019 in the Wuhan province of China, this new RNA virus has several folds higher transmission among humans than its other family member (SARS-CoV and MERS-CoV). The SARS-CoV-2 spike receptor-binding domain (RBD) is the region mediating the binding of the virus to host cells via Angiotensin-converting enzyme 2 (ACE2), a critical step of viral. Here in this study, we have utilized in silico approach for the virtual screening of antiviral library extracted from the Asinex database against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein. Further, the molecules were ranked based on their binding affinity against RBD, and the top 15 molecules were selected. The affinity of these selected molecules to interrupt the ACE2-Spike interaction was also studied. It was found that the chosen molecules were demonstrating excellent binding affinity against spike protein, and these molecules were also very effectively interrupting the ACE2-RBD interaction.Furthermore, molecular dynamics (MD) simulation studies were utilized to investigate the top 3 selected molecules' stability in the ACE2-RBD complexes. To the best of our knowledge, this is the first study where molecules' inhibitory potential against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein and their inhibitory potential against the ACE2-Spike has been studied. We believe that these compounds can be further tested as a potential therapeutic option against COVID-19.  相似文献   

11.
The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.  相似文献   

12.
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an “open” conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.  相似文献   

13.
The cissyn cyclobutane pyrimidine dimer (CPD) is a cytotoxic, mutagenic and carcinogenic DNA photoproduct and is repaired by the nucleotide excision repair (NER) pathway in mammalian cells. The XPC–hHR23B complex as the initiator of global genomic NER binds to sites of certain kinds of DNA damage. Although CPDs are rarely recognized by the XPC–hHR23B complex, the presence of mismatched bases opposite a CPD significantly increased the binding affinity of the XPC–hHR23B complex to the CPD. In order to decipher the properties of the DNA structures that determine the binding affinity for XPC–hHR23B to DNA, we carried out structural analyses of the various types of CPDs by NMR spectroscopy. The DNA duplex which contains a single 3′ T·G wobble pair in a CPD (CPD/GA duplex) induces little conformational distortion. However, severe distortion of the helical conformation occurs when a CPD contains double T·G wobble pairs (CPD/GG duplex) even though the T residues of the CPD form stable hydrogen bonds with the opposite G residues. The helical bending angle of the CPD/GG duplex was larger than those of the CPD/GA duplex and properly matched CPD/AA duplex. The fluctuation of the backbone conformation and significant changes in the widths of the major and minor grooves at the double T·G wobble paired site were also observed in the CPD/GG duplex. These structural features were also found in a duplex that contains the (6–4) adduct, which is efficiently recognized by the XPC–hHR23B complex. Thus, we suggest that the unique structural features of the DNA double helix (that is, helical bending, flexible backbone conformation, and significant changes of the major and/or minor grooves) might be important factors in determining the binding affinity of the XPC–hHR23B complex to DNA.  相似文献   

14.
Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results.  相似文献   

15.
A novel compound 1 and nine known compounds (2–10) were isolated by open column chromatography analysis of the root bark of Ulmus davidiana. Pure compounds (1–10) were tested in vitro to determine the inhibitory activity of the catalytic reaction of soluble epoxide hydrolase (sEH). Compounds 1, 2, 4, 6–8, and 10 had IC50 values ranging from 11.4 ± 2.3 to 36.9 ± 2.6 μM. We used molecular docking to simulate inhibitor binding of each compound and estimated the binding pose of the catalytic site of sEH. From this analysis, the compound 2 was revealed to be a potential inhibitor of sEH in vitro and in silico. Additionally, molecular dynamics (MD) study was performed to find detailed interaction signals of inhibitor 2 with enzyme. Finally, compound 2 is promising candidates for the development of a new sEH inhibitor from natural plants.  相似文献   

16.
The recently reported “UK variant” (B.1.1.7) of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. We present a 2.9-Å resolution cryo-electron microscopy (cryo-EM) structure of the complex between the ACE2 receptor and N501Y spike protein ectodomains that shows Y501 inserted into a cavity at the binding interface near Y41 of ACE2. This additional interaction provides a structural explanation for the increased ACE2 affinity of the N501Y mutant, and likely contributes to its increased infectivity. However, this mutation does not result in large structural changes, enabling important neutralization epitopes to be retained in the spike receptor binding domain. We confirmed this through biophysical assays and by determining cryo-EM structures of spike protein ectodomains bound to 2 representative potent neutralizing antibody fragments.  相似文献   

17.
There is an urgent need to design new anticancer agents that can prevent cancer cell proliferation even with minimal side effects. Accordingly, two new series of 3-methylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol derivatives were designed to act as VEGFR-2 inhibitors. The designed derivatives were synthesised and evaluated in vitro as cytotoxic agents against two human cancer cell lines namely, HepG-2 and MCF-7. Also, the synthesised derivatives were assessed for their VEGFR-2inhibitory effect. The most promising member 11e were further investigated to reach a valuable insight about its apoptotic effect through cell cycle and apoptosis analyses. Moreover, deep investigations were carried out for compound 11e using western-plot analyses to detect its effect against some apoptotic and apoptotic parameters including caspase-9, caspase-3, BAX, and Bcl-2. Many in silico investigations including docking, ADMET, toxicity studies were performed to predict binding affinity, pharmacokinetic, drug likeness, and toxicity of the synthesised compounds. The results revealed that compounds 11e, 11g, 12e, 12g, and 12k exhibited promising cytotoxic activities (IC50 range is 2.1 − 9.8 µM), comparing to sorafenib (IC50 = 3.4 and 2.2 µM against MCF-7 and HepG2, respectively). Moreover, 11b, 11f, 11g, 12e, 12f, 12g, and 12k showed the highest VEGFR-2 inhibitory activities (IC50 range is 2.9 − 5.4 µM), comparing to sorafenib (IC50 = 3.07 nM). Additionally, compound 11e had good potential to arrest the HepG2 cell growth at G2/M phase and to induce apoptosis by 49.14% compared to the control cells (9.71%). As well, such compound showed a significant increase in the level of caspase-3 (2.34-fold), caspase-9 (2.34-fold), and BAX (3.14-fold), and a significant decrease in Bcl-2 level (3.13-fold). For in silico studies, the synthesised compounds showed binding mode similar to that of the reference compound (sorafenib).  相似文献   

18.
The entry of the severe acute respiratory syndrome coronavirus 2 virus in human cells is mediated by the binding of its surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor. A 23-residue long helical segment (SBP1) at the binding interface of human ACE2 interacts with viral spike protein and therefore has generated considerable interest as a recognition element for virus detection. Unfortunately, emerging reports indicate that the affinity of SBP1 to the receptor-binding domain of the spike protein is much lower than that of the ACE2 receptor itself. Here, we examine the biophysical properties of SBP1 to reveal factors leading to its low affinity for the spike protein. Whereas SBP1 shows good solubility (solubility > 0.8 mM), circular dichroism spectroscopy shows that it is mostly disordered with some antiparallel β-sheet content and no helicity. The helicity is substantial (>20%) only upon adding high concentrations (≥20% v/v) of 2,2,2-trifluoroethanol, a helix promoter. Fluorescence correlation spectroscopy and single-molecule photobleaching studies show that the peptide oligomerizes at concentrations >50 nM. We hypothesized that mutating the hydrophobic residues (F28, F32, and F40) of SBP1, which do not directly interact with the spike protein, to alanine would reduce peptide oligomerization without affecting its spike binding affinity. Whereas the mutant peptide (SBP1mod) shows substantially reduced oligomerization propensity, it does not show improved helicity. Our study shows that the failure of efforts, so far, to produce a short SBP1 mimic with a high affinity for the spike protein is not only due to the lack of helicity but is also due to the heretofore unrecognized problem of oligomerization.  相似文献   

19.
20.
Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3′-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the “on” rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52–90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3′ BTE with higher affinity than for either m7G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3′ BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号