首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of mountain hemlock trees in Pacific North America demonstrates a complex relationship to two or more seasonal environmental variables. In order to examine the radial growth response of mountain hemlock to subseasonal climate variables, ring-width and X-ray densitometric analyses were used to construct intra-annual dendroclimatic records. The intent was to highlight the difference between the dendroclimatic outcomes of standard ring-width analyses to those derived from density chronologies collected at high elevation locations in the British Columbia Coast Mountains. This study highlights the importance of using multiple tree-ring parameters to better define the complex growth behaviour in mountain hemlock trees for the construction of more robust proxy climate records. Tree-ring chronologies from three sites were used to describe the inherent climate-growth trends. Maximum tree-ring density values provided a robust data series for constructing site-specific proxy records of late-summer temperature. Annual ring-width measurements provided independent proxies of spring snowpack trends. Significant decreases in temperature and an increase in snowpack depth during the early 1700s and early 1800s coincides with documented PDO phases and Little Ice Age glacier advances. Identification of early and late growing season climate signals within mountain hemlock trees demonstrates the value of documenting the characteristics of multiple tree ring parameters in future dendroclimatic studies.  相似文献   

2.
Climate warming is responsible for observed reduction in snowpack depth and an earlier and faster melt-out in many mountains of the Northern Hemisphere. Such changes in mountain hydroclimate could negatively affect productivity and tree growth in high-elevation forests, but few studies have investigated how and where recent warming trends and changes in snow cover influence forest growth. A network comprising 36 high-elevation Pinus uncinata forests was sampled in the NE Iberian Peninsula, mainly across the Spanish Pyrenees, using dendrochronology to relate tree radial growth to a detailed air temperature and snow depth data. Radial growth was negatively influenced by a longer winter snow season and a higher late-spring snowpack depth. Notably, the effect of snow on tree growth was found regardless the widely reported positive effect of growing-season air temperatures on P. uncinata growth. No positive influence of moisture from spring snowmelt on annual growth of P. uncinata was detected in sampled forests. Tall trees showed a lower growth responsiveness to snow than small trees. Decreasing trends in winter and spring snow depths were detected at most Pyrenean forests, suggesting that the growth of high-elevation P. uncinata forests can beneficiate for a shallower and of shorter duration snowpack associated with warmer conditions. However, water-limited sites located on steep slopes or on rocky substrates, with poor soil-water holding capacity, could experience drought stress because of early depleted snow-related soil moisture.  相似文献   

3.
《Dendrochronologia》2014,32(3):230-236
Three tree-ring width chronologies were developed from 75 Picea schrenkiana trees ranging from low- to high-elevation in the mountains surrounding the Issyk-Kul Lake, Northeast Kyrgyzstan. The reliable chronologies extend back to the mid-18th and late-19th centuries. Spatial correlation analysis indicates that the chronologies for the relatively high-elevation trees contain large-scale climatic signals, while the chronology at relatively low elevation may reflect the local climate variability. The results of the response of tree growth to climate show that these chronologies contain an annual precipitation signal. Furthermore, the influence of temperature indicates mainly moisture stress that is enhanced with rising elevation. The tree-ring records also captured a wetting trend in eastern Central Asia over the past decades. These new tree-ring width chronologies provide reliable proxies of precipitation variability in Central Asia and contribute to the International Tree-Ring Data Bank.  相似文献   

4.
A 458-year-long regional tree-ring-width index chronology of Himalayan cedar (Cedrus deodara D. Don) prepared from three high-elevation sites of Western Himalaya has been presented. Dendroclimatological investigation indicates significant positive relationship of tree-ring index series with winter (December–February) temperature and summer precipitation and inverse relationship with summer temperature. Higher growth in the recent few decades detected in the tree-ring chronology has been noticed coinciding with the rapid retreat of the Himalayan glaciers. Suppressed and released growth patterns in tree-ring chronology have also been observed to be well related to the past glacial fluctuation records of the region. The higher tree growth in recent decades may be partially attributed to the warming trend over the region, particularly increasing the winter warmth, and thus to the regional manifestations of global warming.  相似文献   

5.
Swiss needle cast (SNC) is a fungal disease of Douglas‐fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree‐rings of Douglas‐fir and a non‐susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ13C) of treated Douglas‐fir tree‐rings was greater than that of untreated Douglas‐fir tree‐rings during the fungicide treatment period. Both annual growth and tree‐ring Δ13C increased with treatment such that treated Douglas‐fir had values similar to co‐occurring western hemlock during the treatment period. There was no difference in the tree‐ring oxygen stable isotope ratio between treated and untreated Douglas‐fir. Tree‐ring Δ13C of diseased Douglas‐fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.  相似文献   

6.
Herbivores can alter plant physiology through the induction of abnormal wood formation. Feeding by some insects induces the formation of false rings, a band of thick-walled latewood cells within the earlywood portion of the tree ring that reduces water transport. Hemlock woolly adelgid (Adelges tsugae Annand) and elongate hemlock scale (Fiorinia externa Ferris) are invasive insects that both feed on eastern hemlock [Tsuga canadensis (L.) Carrière]. Adelges tsugae has a greater effect on tree health than F. externa, but the mechanism underlying their differential effect is unknown. We explored the effects of these herbivores by assessing growth ring formation in branches of trees that had been experimentally infested for 4 yr with A. tsugae, F. externa, or neither insect. We measured false ring density, ring growth, and earlywood: latewood ratios in the two most recently deposited growth rings. Branches from A. tsugae-infested trees had 30% more false rings than branches from F. externa-infested trees and 50% more than branches from uninfested trees. In contrast, branches from F. externa-infested trees and control trees did not differ in false ring formation. Radial growth and earlywood: latewood ratios did not differ among treatments. Our results show that two invasive herbivores with piercing-sucking mouth parts have differing effects on false ring formation in eastern hemlock. These false rings may be the product of a systemic plant hypersensitive response to feeding by A. tsugae on hemlock stems. If false rings are responsible for or symptomatic of hemlock water stress, this may provide a potential explanation for the relatively large effect of A. tsugae infestations on tree health.  相似文献   

7.
以采自川西马尔康林区的岷江冷杉(Abies faxoniana)和岷江柏(Cupressus chengiana)树轮为研究对象,对树轮指数与气候要素进行相关分析,研究1995年升温突变前后该区主要针叶树种的树轮响应变化。结果显示:1955—1994年时段,高、中海拔岷江冷杉径向生长对温度正响应,年轮指数呈缓慢的上升趋势,低海拔岷江柏受温度影响不大,年轮指数上升较快;1995—2012年时段,随着温度升高,3样点树木年轮指数并未上升,甚至呈下降趋势,表现出"响应分异现象"。对月气候要素的响应,树种间存在差异:高海拔岷江冷杉在前一时段主要表现为与冬季温度的正相关,后一阶段则转变为与4月温度的显著负相关及与4月份降水的显著正相关,受到显著的4月干旱胁迫影响;中海拔岷江冷杉后一时段温度敏感性消失,5月干旱胁迫加剧;低海拔岷江柏主要受降水影响,后一时段4月份干旱胁迫加剧。升温突变后,川西马尔康林区岷江冷杉和岷江柏均表现出"响应分异现象",在今后的气候重建及碳循环模拟中应加以考虑。  相似文献   

8.
We examine the climate significance in tree-ring chronologies retrieved from Sabina tibetica Kom. (Tibetan juniper) at two sites ranging in elevation from 4124 to 4693 m above sea level (a.s.l.) in the Namling region, south Tibet. The study region is under the control of semi-arid plateau temperate climate. The samples were grouped into high- and low-elevation classes and standard ring-width chronologies for both classes were developed. Statistical analysis revealed a decreasing growth rate yet increasing chronology reliability with increasing elevation. Overall, correlation analyses showed that radial growth in S. tibetica at the study sites was controlled by similar climatic factors, regardless of elevation; these factors comprised early winter (November) and early summer (May–June) temperatures as well as annual precipitation (July–June). Slight differences in the correlation between tree growth along the elevation gradient and climate variables were examined. The correlations with early winter temperature varied from significantly positive at the low-elevation site to weakly positive at the high-elevation site, whereas the correlations between radial growth and early summer temperature increased from weakly negative at the low-elevation sites to strongly negative at the high-elevation sites. The abundant precipitation through the year may have masked variations in tree growth on different elevation aspects. Our results will aid future dendroclimatological studies of Namling tree rings in south Tibet and demonstrate the potential of S. tibetica Kom. for improving our understanding of environmental impacts on tree growth.  相似文献   

9.
In the context of global warming, it is of high importance to assess the influence of climatic change and geographic factors on the radial growth of high-elevation trees. Using tree-ring data collected from four stands of Qilian juniper (Juniperus przewalskii Kom.) across an altitudinal gradient in the central Qilian Mountains, northwest China, we compared the radial growth characteristics and climate–growth relationships at different elevations. Results indicated that there was little difference in the tree-ring parameters of the four chronologies. Correlation analyses both for unfiltered and 10-year high-passed data of monthly climatic variables and chronologies were presented to investigate the climatic forcing on tree growth, and results revealed that the correlation patterns were consistent among the four sites, especially for high-passed data. We employed the principal components analysis method to obtain the first principal component (PC1) of the four chronologies and computed the correlations between PC1 and climate factors. The PC1 correlated significantly with winter (November–January) temperature, prior August and current May temperature, and precipitation in the previous September and current January and April, indicating that tree growth in this region was mainly limited by cold winter temperature and drought in early growing season and prior growing season (prior August and September). However, the climate–growth relationships were unstable; with an increase in temperature, the sensitivity of tree growth to temperature had decreased over the past few decades. Considering the instability of the climate–growth relationships, climate reconstructions based on tree rings in the study area should be approached with more caution.  相似文献   

10.
In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree‐ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree‐ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree‐ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high‐precision 14C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree‐ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October–December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14C high‐precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate–growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High‐precision 14C measurements in multiple trees are a useful method to validate the identification of annual tree rings.  相似文献   

11.
This paper presents the results of a dendrochronological and dendroclimatological study of birch growth in northern Iceland. Two cores from 36 trees were extracted at two locations and a 110-year-long chronology was built, which is near the maximum possible chronology length for living trees in the study area, considering the growing conditions in Iceland and the history of forest management. Birch has a very good dendroclimatological potential. Pointer year analysis indicates that above-average summer temperature and above-average snowpack result in a positive pointer year (wide ring), while below-average summer temperature and a dry winter result in a negative pointer year (narrow ring). Bootstrapped response functions confirm that June and July above-average temperature positively influences tree-ring width. This climate/growth relationship is stable throughout the 1930–2002 period. Yet the influence of above-average temperature is slightly more important in June than in July. It turned out that birch tree rings are challenging to work with in dendrochronology, considering that their boundaries are difficult to distinguish. Moreover, frequent early summer frosts, insect attacks, and sheep grazing affect birch wood formation and development of tree rings in Iceland, making dendrochronological work even harder.  相似文献   

12.
High-throughput culturing (HTC) methods that rely on dilution to extinction in very-low-nutrient media were used to obtain bacterial isolates from Crater Lake, Oregon. 16S rRNA sequence determination and phylogenetic reconstruction were used to determine the potential ecological significance of isolated bacteria, both in Crater Lake and globally. Fifty-five Crater Lake isolates yielded 16 different 16S rRNA gene sequences. Thirty of 55 (55%) Crater Lake isolates had 16S rRNA gene sequences with 97% or greater similarity to sequences recovered previously from Crater Lake 16S rRNA gene clone libraries. Furthermore, 36 of 55 (65%) Crater Lake isolates were found to be members of widely distributed freshwater groups. These results confirm that HTC is a significant improvement over traditional isolation techniques that tend to enrich for microorganisms that do not predominate in their environment and rarely correlate with 16S rRNA gene clone library sequences. Although all isolates were obtained under dark, heterotrophic growth conditions, 2 of the 16 different groups showed evidence of photosynthetic capability as assessed by the presence of puf operon sequences, suggesting that photoheterotrophy may be a significant process in this oligotrophic, freshwater habitat.  相似文献   

13.
树轮记录的贺兰山区近百年来的干旱事件   总被引:6,自引:0,他引:6  
利用采自东亚夏季风最北缘、地处干旱-半干旱地区的贺兰山区的树轮样芯,建立了贺兰山地区最近93年来的树轮宽度年表。与气象观测记录的相关分析结果表明,降水是限制贺兰山区树木生长的主要因素,其中5~7月份的降水与树轮宽度呈显著正相关关系,相关系数为0.522(通过95%的信度检验)。在贺兰山的树轮宽度记录中有两个主要的低生长期即20世纪20年代和70年代末到90年代末,这两个低生长期均与该区域的干旱事件相对应。通过分析还发现在干旱事件中不仅出现低降水而且同时与高气温相伴。也就是说在干旱时期内,高温和低降水的水热组合对树木影响十分显著,从而由单纯降水减少变为一种低降水高蒸发的环境,加剧了气候的干旱程度从而使树木生长出现低的生长期,形成窄轮。这种水热组合引起树轮宽度的变化对于理解过去干旱事件及其过程具有重要意义。  相似文献   

14.
Montane old-growth forests on the windward slopes of interior mountain ranges in British Columbia support high loadings of arboreal lichens. These lichens represent a major source of readily labile plant material and potentially play an important role in ecosystem nutrient dynamics. Given the role of winter storms in scouring lichens from within the canopy and the extended length of winter snowpack, from November through to May or even early June, in these ecosystems, the decomposition of lichen litterfall should be heavily influenced by placement within the snowpack. We have examined this factor by placing litter bags containing samples of the hair lichens, Alectoria sarmentosa and Bryoria spp., on top of the winter snowpack in the Cariboo Mountains. Samples were set out in early- (8 Nov.) mid- (16 Jan.) and late- (22 Mar.) winter and subsequently retrieved on spring snow-melt (22 May). Lichen samples that were buried in the lower snowpack all winter long (196 days) lost two-thirds of their original mass. In contrast lichens placed on the snowpack in mid- (127 days) or late-winter (61 days) lost only 6–15% of their total mass, far less than would be predicted on the basis of time in snowpack alone. Spot measurements showed that the snowpack environment effectively buffers litter samples from extreme winter conditions. All lichen samples placed within the snowpack showed much higher C/N ratios on removal, indicating rapid leaching of readily soluble cellular constituents in the snowpack environment. These findings indicate that the snowpack environment plays a major role in decomposition processes in these high-elevation forests and reinforces our view that lichens are a readily labile nutrient source within these ecosystems.  相似文献   

15.
High-throughput culturing (HTC) methods that rely on dilution to extinction in very-low-nutrient media were used to obtain bacterial isolates from Crater Lake, Oregon. 16S rRNA sequence determination and phylogenetic reconstruction were used to determine the potential ecological significance of isolated bacteria, both in Crater Lake and globally. Fifty-five Crater Lake isolates yielded 16 different 16S rRNA gene sequences. Thirty of 55 (55%) Crater Lake isolates had 16S rRNA gene sequences with 97% or greater similarity to sequences recovered previously from Crater Lake 16S rRNA gene clone libraries. Furthermore, 36 of 55 (65%) Crater Lake isolates were found to be members of widely distributed freshwater groups. These results confirm that HTC is a significant improvement over traditional isolation techniques that tend to enrich for microorganisms that do not predominate in their environment and rarely correlate with 16S rRNA gene clone library sequences. Although all isolates were obtained under dark, heterotrophic growth conditions, 2 of the 16 different groups showed evidence of photosynthetic capability as assessed by the presence of puf operon sequences, suggesting that photoheterotrophy may be a significant process in this oligotrophic, freshwater habitat.  相似文献   

16.
Uneven winter snow influence on tree growth across temperate China   总被引:1,自引:0,他引:1  
Winter snow is an important driver of tree growth in regions where growing‐season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961–2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing‐season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre‐growing‐season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing‐season temperature and early growing‐season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.  相似文献   

17.
帽儿山地区兴安落叶松人工林树木年轮气候学研究   总被引:4,自引:0,他引:4  
通过帽儿山兴安落叶松(Larix gmelinii)人工林树木年轮样本和气象资料,对该地区兴安落叶松进行了树木年轮气候学研究,结果表明:过去50年年均温度上升达到了显著水平(p<0.05),平均温度每10年约上升0.4℃,年平均最高气温每10年约上升0.3℃,年平均最低气温每10年约上升0.5℃,但是年降水量随着年份变化不显著(p>0.05)。从月均温度来看,所有月份均出现明显上升趋势,其中冬季2月份温度上升最为明显,达到0.9~1℃/10年,而夏季(6~8月)上升的较小,达到0.2~0.7℃/10年;多数月份降雨量随年龄变化不显著(p>0.05)。在这一气候变暖过程中,早材及总年轮宽度生长随着夏季(6~7月)温度上升而下降,春季(5月)温度的升高而升高,晚材随着秋季(9月)温度上升而增加,导致在年水平上,年轮生长随着年均温的变化不显著(p>0.05)。降雨量在未来气候变化过程中,没有稳定的变化趋势,但是对年轮影响明显,在年水平上,早材与年轮的生长均受降水量的影响较大(p<0.05)。如果未来东北地区气候变暖趋势明显,而降水量变化不明显,春季和秋季温度升高导致的年轮生长增加会被夏季过高温度抑制年轮生长所抵消,因此,落叶松林径向生长受到的影响可能不大。  相似文献   

18.
Aim Climate variability may be an important mediating agent of ecosystem dynamics in cold, arid regions such as the central Tianshan Mountains, north‐western China. Tree‐ring chronologies and the age structure of a Schrenk spruce (Picea schrenkiana) forest were developed to examine treeline dynamics in recent decades in relation to climatic variability. Of particular interest was whether tree‐ring growth and population recruitment patterns responded similarly to climate warming. Location The study was conducted in eight stands that ranged from 2500 m to 2750 m a.s.l. near the treeline in the Tianchi Nature Reserve (43°45′?43°59′ N, 88°00′?88°20′ E) in the central Xinjiang Uygur Autonomous Region, northwestern China. Methods Tree‐ring cores were collected and used to develop tree‐ring chronologies. The age of sampled trees was determined from basal cores sampled as close as possible to the ground. Population age structure and recruitment information were obtained using an age–d.b.h. (diameter at breast height) regression from the sampled cores and the d.b.h. measured on all trees in the plots. Ring‐width chronologies and tree age structure were both used to investigate the relationship between treeline dynamics and climate change. Results Comparisons with the climatic records showed that both the radial growth of trees and tree recruitment were influenced positively by temperature and precipitation in the cold high treeline zone, but the patterns of their responses differed. The annual variation in tree rings could be explained largely by the average monthly minimum temperatures during February and August of the current year and by the monthly precipitation of the previous August and January, which had a significant and positive effect on tree radial growth. P. schrenkiana recruitment was influenced mainly by consecutive years of high minimum summer temperatures and high precipitation during spring. Over the last several decades, the treeline did not show an obvious upward shift and new recruitment was rare. Some trees had established at the treeline at least 200 years ago. Recruitment increased until the early 20th century (1910s) but then decreased with poor recruitment over the past several decades (1950–2000). Main conclusions There were strong associations between climatic change and ring‐width patterns, and with recruitments in Schrenk spruce. Average minimum temperatures in February and August, and total precipitation in the previous August and January, had a positive effect on tree‐ring width, and several consecutive years of high minimum summer temperature and spring precipitation was a main factor favouring the establishment of P. schrenkiana following germination within the treeline ecotone. Both dendroclimatology and recruitment analysis were useful and compatible to understand and reconstruct treeline dynamics in the central Tianshan Mountains.  相似文献   

19.
In the United States’ (US) Northern Rockies, synoptic pressure systems and atmospheric circulation drive interannual variation in seasonal temperature and precipitation. The radial growth of high-elevation trees in this semi-arid region captures this temperature and precipitation variability and provides long time series to contextualize instrumental-era variability in synoptic-scale climate patterns. Such variability in climate patterns can trigger extreme climate events, such as droughts, floods, and forest fires, which have a damaging impact on human and natural systems. We developed 11 tree-ring width (TRW) chronologies from multiple species and sites to investigate the seasonal climatic drivers of tree growth in the Bighorn Mountains, WY. A principal component analysis of the chronologies identified 54% of shared common variance (1894–2014). Tree growth (expressed by PC1) was driven by multiple seasonal climate variables: previous October and current July temperatures, as well as previous December and current April precipitation, had a positive influence on growth, whereas growth was limited by July precipitation. These seasonal growth-climate relationships corresponded to circulation patterns at higher atmospheric levels over the Bighorn Mountains. Tree growth was enhanced when the winter jet stream was in a northward position, which led to warmer winters, and when the spring jet stream was further south, which led to wetter springs. The second principal component, explaining 19% of the variance, clustered sites by elevation and was strongly related to summer temperature. We leverage this summer temperature signal in our TRW chronologies by combining it with an existing maximum latewood density (MXD) chronology in a nested approach. This allowed us to reconstruct Bighorn Mountains summer (June, July, and August) temperature (BMST) back to 1654, thus extending the instrumental temperature record by 250 years. Our BMST reconstruction explains 39–53% of the variance in regional summer temperature variability. The 1830s were the relatively coolest decade and the 1930s were the warmest decade over the reconstructed period (1654–1983 CE) – which excludes the most recent 3 decades. Our results contextualize recent drivers and trends of climate variability in the US Northern Rockies, which contributes to the information that managers of human and natural systems need in order to prepare for potential future variability.  相似文献   

20.
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号