首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We extended a generic Geant4 application for mechanistic DNA damage simulations to an Escherichia coli cell geometry, finding electron damage yields and proton damage yields largely in line with experimental results. Depending on the simulation of radical scavenging, electrons double strand breaks (DSBs) yields range from 0.004 to 0.010 DSB Gy−1 Mbp−1, while protons have yields ranging from 0.004 DSB Gy−1 Mbp−1 at low LETs and with strict assumptions concerning scavenging, up to 0.020 DSB Gy−1 Mbp−1 at high LETs and when scavenging is weakest. Mechanistic DNA damage simulations can provide important limits on the extent to which physical processes can impact biology in low background experiments. We demonstrate the utility of these studies for low dose radiation biology calculating that in E. coli, the median rate at which the radiation background induces double strand breaks is 2.8 × 10−8 DSB day−1, significantly less than the mutation rate per generation measured in E. coli, which is on the order of 10−3.  相似文献   

2.
3.
Nanoparticles (NPs) have been shown to enhance X-ray radiotherapy and proton therapy of cancer. The effectiveness of radiation damage is enhanced in the presence of high atomic number (high-Z) NPs due to increased production of low energy, higher linear energy transfer (LET) secondary electrons when NPs are selectively internalized by tumour cells. This work quantifies the local dose enhancement produced by the high-Z ceramic oxide NPs Ta2O5 and CeO2, in the target tumour, for the first time in proton therapy, by means of Geant4 simulations. The dose enhancement produced by the ceramic oxides is compared against gold NPs. The energy deposition on a nanoscale around a single nanoparticle of 100 nm diameter is investigated using the Geant4-DNA extension to model particle interactions in the water medium. Enhancement of energy deposition in nano-sized shells of water, local to the NP boundary, ranging between 14% and 27% was observed for proton energies of 5 MeV and 50 MeV, depending on the NP material. Enhancement of electron production and energy deposition can be correlated to the direct DNA damage mechanism if the NP is in close proximity to the nucleus.  相似文献   

4.
A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data.In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy.Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code.  相似文献   

5.
The use of Monte Carlo (MC) simulations remains a powerful tool to study the biological effects induced by ionizing radiation on living beings. Several MC codes are commonly used in research fields such as nanodosimetry, radiotherapy, radiation protection, and space radiation. This work presents an enhancement of an existing model [1] for radiobiological purposes, to account for the indirect DNA damage induced by ionizing particles. The Geant4-DNA simulation toolkit was used to simulate the physical, pre-chemical, and chemical stages of early DNA damage induced by protons and α-particles. Liquid water was used as the medium for simulations. Two phase-space files were generated, one containing the energy deposition events and another with the position of chemical species produced by water radiolysis from 0.1 ps up to 1 ns. These files were used as input in the radiobiological code that contains the genetic material model with atomic resolution, consisting of several copies of 30 nm chromatin fibers. The B-DNA configuration was used. This work focused on the indirect damage produced by the hydroxyl radical (OH) attack on the sugar-phosphate group. The approach followed to account for the indirect DNA damage was the same as those used by other radiobiological codes [2], [3]. The critical parameter considered here was the reaction radius, which was calculated from the Smoluchowski’s diffusion equation. Single, double, and total strand break yields produced by direct, indirect, and mixed mechanisms are reported. The obtained results are consistent with experimental and calculation data sets published in the literature.  相似文献   

6.
Radiation therapy is an established method of cancer treatment. New technologies in cancer radiotherapy need a more accurate computation of the dose delivered in the radiotherapy treatment plan. This study presents some results of a Geant4-based application for simulation of the absorbed dose distribution given by a medical linear accelerator (LINAC). The LINAC geometry is accurately described in the Monte Carlo code with use of the accelerator manufacturer''s specifications. The capability of the software for evaluating the dose distribution has been verified by comparisons with measurements in a water phantom; the comparisons were performed for percentage depth dose (PDD) and profiles for various field sizes and depths, for a 6-MV electron beam. Experimental and calculated dose values were in good agreement both in PDD and in transverse sections of the water phantom.  相似文献   

7.
An extension to Geant4 Monte Carlo code was developed to take into account inter-atomic (molecular) interference effects in X-ray coherent scattering. Based on our previous works, the developed code introduces a set of form factors including interference effects for a selected variety of amorphous materials useful for medical applications, namely various tissues and plastics used to build phantoms. The code is easily upgradable in order to include new materials and offers the possibility to model a generic tissue as a combination of a set of four basic components. A dedicated Geant4 application for the simulation of X-ray diffraction experiments was created to validate the proposed upgrade of Rayleigh scattering model. A preliminary validation of the code obtained through a comparison with EGS4 and an experiment is presented, showing a satisfactory agreement.  相似文献   

8.
PurposeTo present a reference Monte Carlo (MC) beam model developed in GATE/Geant4 for the MedAustron fixed beam line. The proposed model includes an absolute dose calibration in Dose-Area-Product (DAP) and it has been validated within clinical tolerances for non-isocentric treatments as routinely performed at MedAustron.Material and MethodsThe proton beam model was parametrized at the nozzle entrance considering optic and energy properties of the pencil beam. The calibration in terms of absorbed dose to water was performed exploiting the relationship between number of particles and DAP by mean of a recent formalism. Typical longitudinal dose distribution parameters (range, distal penumbra and modulation) and transverse dose distribution parameters (spot sizes, field sizes and lateral penumbra) were evaluated. The model was validated in water, considering regular-shaped dose distribution as well as clinical plans delivered in non-isocentric conditions.ResultsSimulated parameters agree with measurements within the clinical requirements at different air gaps. The agreement of distal and longitudinal dose distribution parameters is mostly better than 1 mm. The dose difference in reference conditions and for 3D dose delivery in water is within 0.5% and 1.2%, respectively. Clinical plans were reproduced within 3%.ConclusionA full nozzle beam model for active scanning proton pencil beam is described using GATE/Geant4. Absolute dose calibration based on DAP formalism was implemented. The beam model is fully validated in water over a wide range of clinical scenarios and will be inserted as a reference tool for research and for independent dose calculation in the clinical routine.  相似文献   

9.
In this work, we used the Monte Carlo-based Geant4 simulation toolkit to calculate the ambient dose equivalents due to the secondary neutron field produced in a new projected proton therapy facility. In particular the facility geometry was modeled in Geant4 based on the CAD design. Proton beams were originated with an energy of 250 MeV in the gantry rooms with different angles with respect to the patient; a fixed 250 MeV proton beam was also modeled. The ambient dose equivalent was calculated in several locations of interest inside and outside the facility, for different scenarios. The simulation results were compared qualitatively to previous work on an existing facility bearing some similarities with the design under study, showing that the ambient dose equivalent ranges obtained are reasonable. The ambient dose equivalents, calculated by means of the Geant4 simulation, were compared to the Australian regulatory limits and showed that the new facility will not pose health risks for the public or staff, with a maximum equivalent dose rate equal to 7.9 mSv/y in the control rooms and maze exit areas and 1.3·10−1 mSv/y close to the walls, outside the facility, under very conservative assumptions. This work represents the first neutron shielding verification analysis of a new projected proton therapy facility and, as such, it may serve as a new source of comparison and validation for the international community, besides confirming the viability of the project from a radioprotection point of view.  相似文献   

10.
PurposeIt was given that the characteristics of the fluence distribution and the energy spectrum structure of 4MV photons on the Phase Space (PhSp) plane and a method to analyzing the characteristics.MethodsAfter the PhSp file of 4 MV photons was acquired by the method of Monte Carlo (MC) calculation, the photons recorded by PhSp file were grouped based on the energy bin, and it was analyzed that the spatial distribution and energy spectrum structure of the photons. The photons in each energy group were continually grouped to sub-files according to momentum bin, and the primary and scattered photons could be separated according to the character of the fluence distribution of the photons in the sub-files.ResultsThe energy of 4 MV beam is a continuous spectrum. The energy constituent on a pixel at different distances from the center point is different, and the average energy on the center axis of the field is the highest; The photons with 0–1.0 MeV had 42.6% of all; that with energy more than 3.0 MeV had 11.7%; greater than 4 MeV, just 1.5%. The primary and scattered photons were easy collected according to the distribution characteristics of sub-groups.ConclusionsThe work to acquire and analyze the PhSp file of the 4 MV beam is significant. 4 MV, 6 MV, 8 MV, 10 MV and 15 MV energy beams basically cover the beams of radiotherapy, and a database of the energy beams could be built for the MC related research of other scholars.  相似文献   

11.
Phosphorylation of histone H2AX on Ser 139 (γH2AX) is one of the earliest events in the response to DNA double-strand breaks; however, the subsequent removal of γH2AX from chromatin is less understood, despite being a process tightly coordinated with DNA repair. Previous studies in yeast have identified the Pph3 phosphatase (the PP4C orthologue) as important for the dephosphorylation of γH2AX. By contrast, work in human cells attributed this activity to PP2A. Here, we report that PP4 contributes to the dephosphorylation of γH2AX, both at the sites of DNA damage and in undamaged chromatin in human cells, independently of a role in DNA repair. Furthermore, depletion of PP4C results in a prolonged checkpoint arrest, most likely owing to the persistence of mediator of DNA damage checkpoint 1 (MDC1) at the sites of DNA lesions. Taken together, these results indicate that PP4 is an evolutionarily conserved γH2AX phosphatase.  相似文献   

12.
Anumber of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage-induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage-induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint.  相似文献   

13.
Inflammation is the ultimate response to the constant challenges of the immune system by microbes, irritants or injury. The inflammatory cascade initiates with the recognition of microorganism-derived pathogen associated molecular patterns (PAMPs) and host cell-derived damage associated molecular patterns (DAMPs) by the pattern recognition receptors (PRRs). DNA as a molecular PAMP or DAMP is sensed directly or via specific binding proteins to instigate pro-inflammatory response. Some of these DNA binding proteins also participate in canonical DNA repair pathways and recognise damaged DNA to initiate DNA damage response. In this review we aim to capture the essence of the complex interplay between DNA damage response and the pro-inflammatory signalling through representative examples.  相似文献   

14.
PurposeTo verify the accuracy of 4D Monte Carlo (MC) simulations, using the 4DdefDOSXYZnrc user code, in a deforming anatomy. We developed a tissue-equivalent and reproducible deformable lung phantom and evaluated 4D simulations of delivered dose to the phantom by comparing calculations against measurements.MethodsA novel deformable phantom consisting of flexible foam, emulating lung tissue, inside a Lucite external body was constructed. A removable plug, containing an elastic tumor that can hold film and other dosimeters, was inserted in the phantom. Point dose and position measurements were performed inside and outside the tumor using RADPOS 4D dosimetry system. The phantom was irradiated on an Elekta Infinity linac in both stationary and moving states. The dose delivery was simulated using delivery log files and the phantom motion recorded with RADPOS.ResultsReproducibility of the phantom motion was determined to be within 1 mm. The phantom motion presented realistic features like hysteresis. MC calculations and measurements agreed within 2% at the center of tumor. Outside the tumor agreements were better than 5% which were within the positional/dose reading uncertainties at the measurement points. More than 94% of dose points from MC simulations agreed within 2%/2 mm compared to film measurements.ConclusionThe deformable lung phantom presented realistic and reproducible motion characteristics and its use for verification of 4D dose calculations was demonstrated. Our 4DMC method is capable of accurate calculations of the realistic dose delivered to a moving and deforming anatomy during static and dynamic beam delivery techniques.  相似文献   

15.
Protein phosphatase PP4C has been implicated in the DNA damage response (DDR), but its substrates in DDR remain largely unknown. We devised a novel proteomic strategy for systematic identification of proteins dephosphorylated by PP4C and identified KRAB-domain-associated protein 1 (KAP-1) as a substrate. Ionizing radiation leads to phosphorylation of KAP-1 at S824 (via ATM) and at S473 (via CHK2). A PP4C/R3β complex interacts with KAP-1 and silencing this complex leads to persistence of phospho-S824 and phospho-S473. We identify a new role for KAP-1 in DDR by showing that phosphorylation of S473 impacts the G2/M checkpoint. Depletion of PP4R3β or expression of the phosphomimetic KAP-1 S473 mutant (S473D) leads to a prolonged G2/M checkpoint. Phosphorylation of S824 is necessary for repair of heterochromatic DNA lesions and similar to cells expressing phosphomimetic KAP-1 S824 mutant (S824D), or PP4R3β-silenced cells, display prolonged relaxation of chromatin with release of chromatin remodelling protein CHD3. Our results define a new role for PP4-mediated dephosphorylation in the DDR, including the regulation of a previously undescribed function of KAP-1 in checkpoint response.  相似文献   

16.
Radiation damage to the central nervous system (CNS) has been an on-going challenge for the last decades primarily due to the issues of brain radiotherapy and radiation protection for astronauts during space travel. Although recent findings revealed a number of molecular mechanisms associated with radiation-induced impairments in behaviour and cognition, some uncertainties exist in the initial neuronal cell injury leading to the further development of CNS malfunction. The present study is focused on the investigation of early biological damage induced by ionizing radiations in a sample neural network by means of modelling physico-chemical processes occurring in the medium after exposure. For this purpose, the stochastic simulation of incident particle tracks and water radiation chemistry was performed in realistic neuron phantoms constructed using experimental data on cell morphology. The applied simulation technique is based on using Monte-Carlo processes of the Geant4-DNA toolkit. The calculations were made for proton, 12C, and 56Fe particles of different energy within a relatively wide range of linear energy transfer values from a few to hundreds of keV/μm. The results indicate that the neuron morphology is an important factor determining the accumulation of microscopic radiation dose and water radiolysis products in neurons. The estimation of the radiolytic yields in neuronal cells suggests that the observed enhancement in the levels of reactive oxygen species may potentially lead to oxidative damage to neuronal components disrupting the normal communication between cells of the neural network.  相似文献   

17.
The mutant K-Ras elevates intracellular reactive oxygen species (ROS) levels and leads to oxidative DNA damage, resulting in malignant cell transformation. Ras association domain family 1 isoform A (RASSF1A) is known to play a role as a Ras effector. However, the suppressive effect of RASSF1A on K-RasV12-induced ROS increase and DNA damage has not been identified. Here, we show that RASSF1A blocks K-RasV12-triggered ROS production. RASSF1A expression also inhibits oxidative DNA damage and chromosomal damage. From the results obtained in this study, we suggest that RASSF1A regulates the cellular ROS levels enhanced by the Ras signaling pathway, and that it may function as a tumor suppressor by suppressing DNA damage caused by activated Ras.  相似文献   

18.
19.
The level of intracellular diadenosine 5′, 5′′′-P1,P4-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70–80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号