首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Primate quadrupedal kinematics differ from those of other mammals. Several researchers have suggested that primate kinematics are adaptive for safe travel in an arboreal, small-branch niche. This study tests a compatible hypothesis that primate kinematics are related to their limb mass distribution patterns. Primates have more distally concentrated limb mass than most other mammals due to their grasping hands and feet. Experimental studies have shown that increasing distal limb mass by adding weights to the limbs of humans and dogs influences kinematics. Adding weights to distal limb elements increases the natural period of a limb's oscillation, leading to relatively long swing and stride durations. It is therefore possible that primates' distal limb mass is responsible for some of their unique kinematics. This hypothesis was tested using a longitudinal ontogenetic sample of infant baboons (Papio cynocephalus). Because limb mass distribution changes with age in infant primates, this project examined how these changes influence locomotor kinematics within individuals. The baboons in this sample showed a shift in their kinematics as their limb mass distributions changed during ontogeny. When their limb mass was most distally concentrated (at young ages), stride frequencies were relatively low, stride lengths were relatively long, and stance durations were relatively long compared to older ages when limb mass was more proximally concentrated. These results suggest that the evolution of primate quadrupedal kinematics was tied to the evolution of grasping hands and feet.  相似文献   

2.
To address the effects of an evolutionary increase in body size on long bone skeletal allometry, scaling patterns relating body mass, bone length, limb length, midshaft diameters, and cross-sectional properties of the humerus and femur were analyzed for four species of scansorial mustelids. Humeral and, to a lesser extent, femoral allometry is consistent with expectations of elastic similarity: bone and limb length scale with negative allometry on body mass while bone robusticity (cross-sectional parameters against bone length) scales with strong positive allometry. Differences between fore- and hindlimb scaling patterns, however, are observed, with size-dependent increases in forelimb length and humeral strength and robusticity exceeding those of the hindlimb and femur. It is hypothesized that this greater fore- than hindlimb lengthening results in postural modifications that serve to straighten the hindlimb of larger bodied scansorial mustelids relative to smaller mustelids. Straightening of hindlimb joints would more precisely align the long axis of the femur with peak (vertical) ground reaction forces, thereby accounting for the reduction in relative bending stresses acting on the femur compared to the humerus. J. Morphol. 235:121–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Primates have more distally distributed limb muscle mass compared to most nonprimate mammals. The heavy distal limbs of primates are likely related to their strong manual and pedal grasping abilities, and interspecific differences in limb mass distributions among primates are correlated with the amount of time spent on arboreal supports. Within primate species, individuals at different developmental stages appear to differ in limb mass distribution patterns. For example infant macaques have more distally distributed limb mass at young ages. A shift from distal to proximal limb mass concentrations coincides with a shift from dependent travel (grasping their mother's hair) to independent locomotion. Because the functional demands placed on limbs may differ between taxa, understanding the ontogeny of limb mass distribution patterns is likely an essential element in interpreting the diversity of limb mass distribution patterns present in adult primates. This study examines changes in limb inertial properties during ontogeny in a longitudinal sample of infant baboons (Papio cynocephalus). The results of this study show that infant baboons undergo a transition from distal to proximal limb mass distribution patterns. This transition in limb mass distribution coincides with the transition from dependent to independent locomotion during infant development. Compared to more arboreal macaques, infant baboons undergo a faster transition to more proximal limb mass distribution patterns. These results suggest that functional demands placed on the limbs during ontogeny have a strong impact on the development of limb mass distribution patterns.  相似文献   

5.
Scale effects on whole limb morphology (i.e. bones together with in situ overlying muscles) are well understood for the neognath forelimb. However, scale effects on neognath gross hindlimb morphology remain largely unexplored. To broaden our understanding of avian whole limb morphology, I investigated the scaling of hindlimb inertial properties in neognath birds, testing empirical scaling relationships against the model of geometric similarity. Inertial property data – mass, moment of inertia, centre of mass distance, and radius of gyration – were collected from 22 neognath species representing a wide range of locomotor specializations. When scaled against body mass, hindlimb inertial properties scale with positive allometry. Thus, in terms of morphology, larger bodied neognaths possess hindlimbs requiring disproportionately more energy to accelerate and decelerate relative to body mass than smaller bodied birds. When scaled against limb length, hindlimb inertial properties scale according to isometry. In the subclade Land Birds (sensu Hackett et al.), hindlimb inertial properties largely scale according to positive allometry. The contrasting results of positive allometry vs. isometry in neognaths are due to how hindlimb length scales against body mass. Negative allometry of hindlimb inertial properties, which would reduce terrestrial locomotion costs, would probably make the hindlimb susceptible to mechanical failure or too diminutive for its many ecological functions. Comparing the scaling relationships of wings and hindlimbs highlights how locomotor costs influence the scaling of limb inertial properties. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 14–31.  相似文献   

6.
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb''s potential for angular acceleration scales according to geometric similarity, whereas the hindlimb''s potential for angular acceleration scales with positive allometry.  相似文献   

7.
Postcranial limb bones were compared among primates of different locomotor types. Seventy-one primate species, in which all families of primates were included, were grouped into nine locomotor types. Osteometrical data on long bones and data on the cross-sectional geometry of the humerus and the femur were studied by means of allometric analysis and principal component analysis. Relatively robust forelimb bones were observed in the primate group which adopted the relatively terrestrial locomotor type compared with the group that adopted the arboreal locomotor type. The difference resembled the previously reported comparison between terrestrial and arboreal groups among all quadrupedal mammals. The degree of arboreality in daily life is connected with the degree of hindlimb dominance, or the ratio of force applied to the fore- and hindlimb in positional behaviour and also with the shape, size and robusticity of limb bones.  相似文献   

8.
Structural and mechanical indicators of limb specialization in primates   总被引:5,自引:0,他引:5  
The structural mechanics of femora and humeri from primates representing a wide spectrum of habitual locomotor activities were examined to determine how cross-sectional properties vary with functional specializations of the extremities. Average bending rigidities of the midshaft of humerus and femur were measured in 60 individuals of four nonhuman primate species (Macaca nemestrina, Macaca fascicularis, Presbytis cristata, Hylobates lar) using single-beam photon absorptiometry. Linear regression analyses of the loge transformed data were used to assess the relative usage of the forelimb and hindlimb in propulsion and weight bearing, and to evaluate deviations from generalized mammalian quadrupedalism. The results suggest that average bending rigidities of the humerus and femur in primates reflect the extent to which the forelimb and hindlimb are used differently in locomotion; deviations of average bending rigidity from geometric similarity indicate functional variations from generalized mammalian quadrupedalism and the ratio of humeral to femoral bending rigidity can be used to identify trends towards hindlimb or forelimb dominance in locomotion and can be employed in general to determine how the limb was used.  相似文献   

9.
The paleontological evidence pertaining to the evolution of the modern diversity in structure and function of primate hands is reviewed. A reconstructed digit ofPlesiadapis shows characters and functional capacities typical of an arboreal way of life. In euprimates, we describe the strepsirhine morphotype hand, characterized by a relatively high degree of pollical divergence, features of the ulnocarpal articulation that imply an enhanced capacity for ulnar deviation, and relatively long digits; this hand is specialized for grasping. Hand remains ofSmilodectes, Adapis and a Messel adapiform reveal a remarkable diversity in carpal structure achieved in these Eocene adapiforms, due to differing locomotor evolutionary pathways. The subfossil lemuriformsMegaladapis andPalaeopropithecus both show stereotyped (but different) grasping capabilities. The simiiform morphotype hand combines a relatively low degree of pollical divergence, features of the ulnocarpal articulation that imply a limited capacity for ulnar deviation, and relatively long metacarpals and short digits. This type of hand anatomy is mechanically well-suited to arboreal palmigrade quadrupedalism. The hands ofPliopithecus andMesopithecus are generally monkey-like.Oreopithecus' hand fits with its presumed suspensory habits. The hand ofProconsul suggests palmigrade quadrupedalism and climbing.Australopithecus afarensis' hand remains primarily a branch-grasping organ, with indications of enhanced manipulatory abilities.Homo habilis andParanthropus robustus illustrate two lines of increased tool-use abilities. The euprimate morphotype hand was elongated, had a short carpus and limited mobility, but the corresponding locomotor mode remains speculative. Considerations on hand evolution in some living primate groups are included in the final summary of hand evolution in primates.  相似文献   

10.
For better understanding of the links between limb morphology and the metabolic cost of locomotion, we have characterized the relationships between limb length and shape and other functionally important variables in the straightened forelimbs and hindlimbs of a sample of 12 domestic dogs (Canis familiaris). Intra-animal comparisons show that forelimbs and hindlimbs are very similar (not significantly different) in natural pendular period (NPP), center-of-mass, and radius of gyration, even though they differ distinctly in mass, length, moment-of-inertia, and other limb proportions. The conservation of limb NPP, despite pronounced dissimilarity in other limb characteristics, appears to be the result of systematic differences in shape, forelimbs tending to be cylindrical and hindlimbs conical. Estimating limb NPP for other species from data in the literature on segment inertia and total limb length, we present evidence that the similarity between forelimbs and hindlimbs in NPP is generally true for mammals across a large size range. Limbs swinging with or near their natural pendular periods will maximize within-limb pendular exchange of potential and kinetic energy. As all four limbs of moderate- and large-size animals swing with the same period during walking, maximal advantage can be derived from the pendular exchange of energy only if forelimbs and hindlimbs are very similar in NPP. We hypothesize that an important constraint in the evolution of limb length and shape is the locomotor economy derived from forelimbs and hindlimbs of similar natural pendular period. J. Morphol. 234:183–196, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Large-scale interspecific studies of mammals ranging between 0.04–280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1) ranges of body size, and/or (2) numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively) in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus) habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥108 months) and body mass (2–29.5 kg) during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1) why younger mammals (including baboons) tend to have relatively stronger bones than adults, and 2) why humeri appear relatively weaker than femora (in at least baboons). Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories.  相似文献   

12.
Most quadrupedal mammals support a larger amount of body weight on their forelimbs compared with their hind limbs during locomotion, whereas most primates support more of their body weight on their hind limbs. Increased hind limb weight support is generally interpreted as an adaptation that reduces stress on primates' highly mobile forelimb joints. Thus, increased hind limb weight support was likely vital for the evolution of primate arboreality. Despite its evolutionary importance, the mechanism used by primates to achieve this important kinetic pattern remains unclear. Here, we examine weight support patterns in a sample of chimpanzees (Pan troglodytes) to test the hypothesis that limb position, combined with whole body center of mass position (COM), explains increased hind limb weight support in this taxon. Chimpanzees have a COM midway between their shoulders and hips and walk with a relatively protracted hind limb and a relatively vertical forelimb, averaged over a step. Thus, the limb kinematics of chimpanzees brings their feet closer to the COM than their hands, generating greater hind limb weight support. Comparative data suggest that these same factors likely explain weight support patterns for a broader sample of primates. It remains unclear whether primates use these limb kinematics to increase hind limb weight support, or whether they are byproducts of other gait characteristics. The latter hypothesis raises the intriguing possibility that primate weight support patterns actually evolved as byproducts of other traits, or spandrels, rather than as adaptations to increase forelimb mobility. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Recent expeditions to Madagascar have recovered abundant skeletal remains of Archaeolemur, one of the so-called "monkey lemurs" known from Holocene deposits scattered across the island. These new skeletons are sufficiently complete to permit reassembly of entire hands and feet--postcranial elements crucial to drawing inferences about substrate preferences and positional behavior. Univariate and multivariate analysis of intrinsic hand and foot proportions, phalangeal indices, relative pollex and hallux lengths, phalangeal curvature, and distal phalangeal shape reveal a highly derived and unique morphology for an extinct strepsirrhine that diverges dramatically from that of living lemurs and converges in some respects on that of Old World monkeys (e.g., mandrills, but not baboons or geladas). The hands and feet of Archaeolemur are relatively short (extremely so relative to body size); the carpus and tarsus are both "long" relative to total hand and foot lengths, respectively; phalangeal indices of both the hands and feet are low; both pollex and hallux are reduced; the apical tufts of the distal phalanges are very broad; and the proximal phalanges are slightly curved (but more so than in baboons). Overall grasping capabilities may have been compromised to some extent, and dexterous handling of small objects seems improbable. Deliberate and noncursorial quadrupedalism was most likely practiced on both the ground and in the trees. A flexible locomotor repertoire in conjunction with a eurytopic trophic adaptation allowed Archaeolemur to inhabit much of Madagascar and may explain why it was one of the latest surviving subfossil lemurs.  相似文献   

15.
In many primate species, hands and feet are large relative to neonatal body weight, and they subsequently exhibit negative allometric growth during ontogeny. Here, data are presented showing that this pattern holds for a wild population of lemur, Verreaux's sifaka (Propithecus verreauxi verreauxi). Using morphometric data collected on this population, it is shown that younger animals possess relatively large hands and feet. This ontogenetic pattern suggests a simple behavioral test: do juvenile animals with their larger, almost adult‐sized hands and feet locomote on similarly sized substrates as adult animals? Using locomotor bout sampling, this question was tested by collecting positional behavior data on this population. Results from this test find no differences in locomotor behaviors or substrate use between yearlings and adult animals. To place these results in a broader evolutionary context, heritabilities and selection gradients of hands, feet, and other limb elements for animals in this population were estimated. Among limb elements, heritabilities range from 0.16–0.44, with the foot having the lowest value. Positive directional selection acts most strongly on the foot (directional selection gradient = 0.119). The low heritability and positive selection coefficient indicate that selection has acted, and continues to act, on foot size in young animals. These results are interpreted within a functional context with respect to the development of locomotor coordination: larger feet enable young animals to use “adult‐sized” substrates when they move through their habitat. It is suggested that the widespread pattern of negative allometry of the extremities in sifaka and other primates is maintained by selection, and does not simply reflect a primitive developmental pathway that has no adaptive basis. Am J Phys Anthropol 131:261–271, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

16.
Teilhardina belgica is one of the earliest fossil primates ever recovered and the oldest fossil primate from Europe. As such, this taxon has often been hypothesized as a basal tarsiiform on the basis of its primitive dental formula with four premolars and a simplified molar cusp pattern. Until recently [see Rose et al.: Am J Phys Anthropol 146 (2011) 281–305; Gebo et al.: J Hum Evol 63 (2012) 205–218], little was known concerning its postcranial anatomy with the exception of its well‐known tarsals. In this article, we describe additional postcranial elements for T. belgica and compare these with other tarsiiforms and with primitive adapiforms. The forelimb of T. belgica indicates an arboreal primate with prominent forearm musculature, good elbow rotational mobility, and a horizontal, rather than a vertical body posture. The lateral hand positions imply grasps adaptive for relatively large diameter supports given its small body size. The hand is long with very long fingers, especially the middle phalanges. The hindlimb indicates foot inversion capabilities, frequent leaping, arboreal quadrupedalism, climbing, and grasping. The long and well‐muscled hallux can be coupled with long lateral phalanges to reconstruct a foot with long grasping digits. Our phyletic analysis indicates that we can identify several postcranial characteristics shared in common for stem primates as well as note several derived postcranial characters for Tarsiiformes. Am J Phys Anthropol 156:388–406, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Young primates have relatively large hands and feet for their body size, perhaps enhancing grasping ability. We test the hypothesis that selection for improved grasping ability is responsible for these scaling trends by examining the ontogeny of intrinsic hand and foot proportions in capuchin monkeys (Cebus albifrons and Sapajus apella). If selection for improved grasping ability is responsible for the observed patterns of hand and foot growth in primates, we predicted that fingers and toes would be longer early in life and proportionally decline with age. We measured the lengths of manual and pedal metapodials and phalanges in a mixed‐longitudinal radiographic sample. Bone lengths were (a) converted into phalangeal indices (summed non‐distal phalangeal length/metapodial length) to test for age‐related changes in intrinsic proportions and (b) fit to Gompertz models of growth to test for differences in the dynamics of phalangeal versus metapodial growth. Manual and pedal phalangeal indices nearly universally decreased with age in capuchin monkeys. Growth curve analyses revealed that metapodials generally grew at a faster rate, and for a longer duration, than corresponding phalanges. Our findings are consistent with the hypothesis that primates are under selection for increased grasping ability early in life. Relatively long digits may be functionally adaptive for growing capuchins, permitting a more secure grasp on both caregivers and arboreal supports, as well as facilitating early foraging. Additional studies of primates and other mammals, as well as tests of grasping performance, are required to fully evaluate the adaptive significance of primate hand and foot growth.  相似文献   

18.
One of the most distinctive aspects of primate quadrupedal walking is the use of diagonal sequence footfalls in combination with diagonal-couplets interlimb timing. Numerous hypotheses have been offered to explain why primates might have evolved this type of gait, yet this important question remains unresolved. Because infant primates use a wider variety of quadrupedal gaits than do adults, they provide a natural experiment with which to test hypotheses about the evolution of unique aspects of primate quadrupedalism. In this study, we present kinematic data on two infant baboons (Papio cynocephalus) in order to test the recent hypothesis that diagonal sequence, diagonal couplets walking might have evolved in primates because their limb positioning provides stability in a small branch environment (Cartmill et al. [2002] Zool J Linn Soc 136:401-420). To assess hindlimb position at the moment of forelimb touchdown, we measured hindlimb angular excursion and ankle position for 84 walking strides, across three different types of gaits (diagonal sequence, diagonal couplets (DSDC); lateral sequence lateral couplets (LSLC); and lateral sequence diagonal couplets (LSDC)). Results indicate that if a forelimb were to contact an unstable substrate, LSLC walking provides as much, and perhaps more, stability when compared to DSDC walking. Therefore, it appears that this moment in a stride was unlikely to be a particularly important selective factor in the evolution of DSDC walking. Further insight into this issue will likely be gained by observations of primate quadrupedalism in natural environments, where the use of lateral sequence gaits might be more common than currently known.  相似文献   

19.
Studies of primate taxonomy and phylogeny often depend on comparisons of limb dimensions, yet there is little information on how morphology correlates and contributes to foraging strategies and ecology. Callitrichid primates are ideal for comparative studies as they exhibit a range of body size, limb proportions and diet. Many callitrichid species exhibit a high degree of exudativory, and to efficiently exploit these resources, they are assumed to have evolved morphologies that reflect a level of dependence on these resources. We tested assumptions by considering measurements of limb proportion and frictional features of the volar surfaces in preserved specimens of 25 species with relation to published life history and ecological data. The degree of exudativory and utilization of vertical substrates during foraging were found to correlate both with size and with size‐corrected foot and hand dimensions. Smaller species, which engage in greater degrees of exudativory, had proportionally longer hands and feet and more curved claw‐like tegulae (nails) on their digits to facilitate climbing on vertical substrates. The density of patterned ridges (dermatoglyphs) on the volar surfaces of the hands and feet is higher in more exudativorous genera, suggesting a role in climbing on vertical tree trunks during foraging. Dermatoglyph comparisons suggest that ridges on the soles and palms may facilitate food procurement by enhancing frictional grip during exudate feeding. Volar pad features corroborate taxonomic relationships described from dental morphology. Am J Phys Anthropol 152:447–458, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The characteristics of "climbing" in the sense of locomotion or posture on three-dimensional substrates are discussed from a biomechanical viewpoint. For this purpose, the mechanical conditions of the most widely spread modes of locomotion or gaits used in arboreal surroundings are reviewed. This allows precise identification of morphological characteristics of traits that are advantageous, and therefore have a positive selective value. Further, at least some of the environmental and substrate characteristics that need to be present for using a specific gait, are noted. It turns out that the extremity which is placed lower on the substrate, has to carry a higher load. If this extremity is consistently the hindlimb--which actually is the case in primates, because of understandable, though complex reasons--a division of labor is likely to occur between the limbs: the hindlimb becoming stronger and the forelimb weaker, but more versatile. A very specific, and advantageous feature of the primates is their possession of prehensile hands and feet. That means the autopodia are able (1) to produce by themselves, without the aid of body weight, very high frictional resistance, and (2) to transmit tensile forces as well as torsional moments on the substrate. The above-mentioned division of labor between fore- and hindlimbs implies that the former make the first contacts with and explore the properties of parts of the environment. As a next step, prehensile hands on long arms may easily replace length and mobility of the neck in getting hold of food items. So very characteristic traits of human body shape can be derived to a large extent from the necessities of arboreal locomotion: Prehensile hands, long arms, concentration of body weight on the hindlimbs, shortness of the trunk in comparison to limb length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号