首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acivicin [(alphaS,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid] was investigated as an inhibitor of the triad glutamine amidotransferases, IGP synthase and GMP synthetase. Nucleophilic substitution of the chlorine atom in acivicin results in the formation of an imine-thioether adduct at the active site cysteine. Cys 77 was identified as the site of modification in the heterodimeric IGPS from Escherichia coli (HisHF) by tryptic digest and FABMS. Distinctions in the glutaminase domains of IGPS from E. coli, the bifunctional protein from Saccharomyces cerevisiae (HIS7), and E. coli GMPS were revealed by the differential rates of inactivation. While the ammonia-dependent turnover was unaffected by acivicin, the glutamine-dependent reaction was inhibited with unit stoichiometry. In analogy to the conditional glutaminase activity seen in IGPS and GMPS, the rates of inactivation were accelerated > or =25-fold when a nucleotide substrate (or analogue) was present. The specificity (k(inact)/K(i)app) for acivicin is on the same order of magnitude as the natural substrate glutamine in all three enzymes. The (alphaS,5R) diastereomer of acivicin was tested under identical conditions as acivicin and showed little inhibitory effect on the enzymes indicating that acivicin binds in the glutamine reactive site in a specific conformation. The data indicate that acivicin undergoes a glutamine amidotransferase mechanism-based covalent bond formation in the presence of nucleotide substrates or products. Acivicin and its (alphaS,5R) diastereomer were modeled in the glutaminase active site of GMPS and CPS to confirm that the binding orientation of the dihydroisoxazole ring is identical in all three triad glutamine amidotransferases. Stabilization of the imine-thioether intermediate by the oxyanion hole in triad glutamine amidotransferases appears to confer the high degree of specificity for acivicin inhibition and relates to a common mechanism for inactivation.  相似文献   

2.
Tumor cells intensely utilize glutamine as the major source of respiratory fuel. Glutamine-analogue acivicin inhibits tumor growth and tumor-induced angiogenesis in Ehrlich ascites carcinoma. In the present study, antitumor properties of acivicin in combination with glutaminase enzyme is reported. Acivicin along with E. coli glutaminase synergistically reduced in vitro proliferation and matrigel invasion of human MCF-7 and OAW-42 cells. Effects of single and combined treatments with acivicin and glutaminase on angiogenic factors were also analyzed in these cell lines. Co-administration of the treatment agents inhibits the release of VEGF and MMP-9 by cells in culture supernatant significantly than single agent treatments. The result suggests that combination of acivicin with glutaminase may provide a better therapeutic option than either of them given separately for treating human breast and ovarian cancer. However, further studies are required to be conducted in vivo for its confirmation.  相似文献   

3.
The metabolism of glutamine was investigated in cultured rat kidney cells. Glutamine utilization and product formation were followed as a function of time at either 10 microM or 1 mM initial glutamine concentration. At 1 mM glutamine, glutamate and gamma-glutamylglutamate were the major products formed at the end of a 5-min incubation period; glutamate accounted for 46% while gamma-glutamylglutamate accounted for 33% of the glutamine utilized. With time, glutamate continued to accumulate while gamma-glutamyl peptide formation leveled off. The role of gamma-glutamyl transpeptidase was assessed by using hippurate, a physiological activator of gamma-glutamyl transpeptidase and acivicin, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid, an inhibitor of gamma-glutamyl transpeptidase. Hippurate, 4 mM, increased the utilization of glutamine and the formation of glutamate, gamma-glutamyl peptides and ammonia. Exposure of cells to acivicin resulted in 98% inhibition of gamma-glutamyl transpeptidase without effecting phosphate-dependent glutaminase activity. Acivicin inhibition resulted in a decreased utilization of glutamine and product formation as compared to control; 5-oxoproline appearance fell 70%. The fractional distribution of glutamine carbon and nitrogen into its metabolic products in control, hippurate and acivicin-treated cells showed no change at the end of 60 min. The data provide evidence that gamma-glutamyl transpeptidase utilizes glutamine and forms gamma-glutamyl peptides in cultured kidney cells.  相似文献   

4.
Native vesicles isolated from Ehrlich ascites tumor cells accumulate glutamine by means of Na+-dependent transport systems; thiocyanate seems to be the more effective anion. The apparent affinity constant for the process was 0.38 mM. The Arrhenius plot gave an apparent activation energy of 12.3 kJ/mol. The structural analogs of glutamine, acivicin (2.5 mM) and azaserine (2.5 mM), inhibited the net uptake by 67 and 70%, respectively. The sulfhydryl reagents mersalyl, PCMBS, NEM, and DTNB also inhibited net uptake, suggesting that sulfhydryl groups may be involved in the activity of the carrier protein. A strong inhibition was detected when the vesicles were incubated in the presence of alanine, cysteine, or serine; in addition, histidine, but not glutamate or leucine, had a negative effect on glutamine transport.  相似文献   

5.
Acivicin, a chlorinated amino acid antibiotic, is found to be remarkably effective in killing both the vector and the host form of the parasitic protozoa, Leishmania donovani, the causative agent for visceral leishmaniasis or Kala-azar. The ED50 (50 nM) for the pathogenic amastigote form in in vitro screening system is significantly lower than the reported values for other drugs under trial. The drug irreversibly inactivates both in vitro and in vivo carbamyl phosphate synthetase II, the first enzyme of the pyrimidine biosynthetic pathway. The irreversible inactivation of this sensitive target enzyme and lack of effective reversal by glutamine makes acivicin a preferred candidate for potential chemotherapy against increasing number of Kala-azar cases that are reported to be unresponsive to pentavalent antimonials.  相似文献   

6.
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicarbonate the second-order rate constant for inactivation of CPS was reduced by a factor of 200. The enzyme was protected against inactivation by the inclusion of glutamine in the reaction mixture. The ammonia-dependent activities were unaffected by the incubation of CPS with acivicin. These results are consistent with the covalent labeling of the glutamine-binding site located within the small amidotransferase subunit. The binding of ATP and bicarbonate to the large subunit of CPS must also induce a conformational change within the amidotransferase domain of the small subunit that enhances the nucleophilic character of the thiol group required for glutamine hydrolysis. The acivicin-inhibited enzyme was crystallized, and the three-dimensional structure was determined by x-ray diffraction techniques. The thiol group of Cys-269 was covalently attached to the dihydroisoxazole ring of acivicin with the displacement of a chloride ion.  相似文献   

7.
The role of gamma-glutamyltransferase (gamma-GT) in renal ammoniagenesis, glutamine (Gln), and glutathione (GSH) utilization was evaluated in the intact functioning rat kidney of subtotal nephrectomy (SNX) model of chronic renal failure (CRF). NH4+ derived from extracellular gamma-GT hydrolysis of Gln and GSH was differentiated from the intramitochondrial phosphate-dependent glutaminase by using acivicin, a gamma-GT-specific inhibitor. In the control (C) group Gln extraction accounted for 61% of total NH4+ production (sum of renal venous and urinary NH4+), but only 41% in SNX group. In the SNX group GSH extraction accounted for 10% of total NH4+ production, but only 1% in the C group. Acivicin inhibited 44% and 33% of total NH4+ production in SNX and C group respectively, as compared to baseline before acivicin. In CRF, gamma-GT a key enzyme of the gamma-glutamyl cycle plays a significant role in adaptive ammoniagenesis.  相似文献   

8.
Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia   总被引:1,自引:0,他引:1  
The glutamine antagonists, acivicin (NSC 163501), azaserine (NSC 742), and 6-diazo-5-oxo-L-norleucine (DON) (NSC 7365), are potent inhibitors of many glutamine-dependent amidotransferases in vitro. Experiments performed with mouse L1210 leukemia growing in culture show that each antagonist has different sites of inhibition in nucleotide biosynthesis. Acivicin is a potent inhibitor of CTP and GMP synthetases and partially inhibits N-formylglycineamidine ribotide (FGAM) synthetase of purine biosynthesis. DON inhibits FGAM synthetase, CTP synthetase, and glucosamine-6-phosphate isomerase. Azaserine inhibits FGAM synthetase and glucosamine-6-phosphate isomerase. Large accumulations of FGAR and its di- and triphosphate derivatives were observed for all three antagonists which could interfere with the biosynthesis of nucleic acids, providing another mechanism of cytotoxicity. Acivicin, azaserine, and DON are not potent inhibitors of carbamyl phosphate synthetase II (glutamine-hydrolyzing) and amidophosphoribosyltransferase in leukemia cells growing in culture although there are reports of such inhibitions in vitro. Blockade of de novo purine biosynthesis by these three antagonists results in a "complementary stimulation" of de novo pyrimidine biosynthesis.  相似文献   

9.
The inhibitor of gamma-glutamyl transpeptidase (gamma-GT) acivicin modulates cellular responses including growth, myeloid maturation and apoptosis. Whether these effects result from the inhibition of gamma-GT enzyme activity remains unclear. We compared the cellular effects of acivicin against a more potent and specific inhibitor of gamma-GT (L-2-amino-4-boronobutanoic acid (L-ABBA)) in gamma-GT-negative (B lymphoblastoid Ramos) and gamma-GT-positive (myelomonocytic HL-60, gamma-GT-transfected Ramos) cell lines. Under non-oxidative stress conditions, acivicin-induced cell growth arrest, apoptosis and macrophage maturation occurred independent of gamma-GT while L-ABBA did not influence any of these processes. Acivicin triggered tyrosine phosphorylation and increased nuclear factor kappaB activity. Further insight into the role of gamma-GT in cellular processes is needed.  相似文献   

10.
Deiodination is required for conversion of thyroxine, the inactive prohormone secreted by the thyroid gland, to 3,5,3'-triiodothyronine, the biologically active thyroid hormone. The principal enzyme catalyzing this reaction, Type I iodothyronine 5' deiodinase, was shown recently to contain the amino acid, selenocysteine, and site-directed mutagenesis showed that this amino acid confers the biochemical properties characteristic of this enzyme. Previous studies suggest that a histidine residue may also be critical for activity. To further our understanding of the biochemical mechanism of this reaction, we have used in vitro mutagenesis to examine the contribution of each of the 4 histidines in this enzyme to the deiodination process. Two of the histidines (185 and 253) are not involved in deiodination, as their removal had no effect on activity. Mutagenesis of histidine 158 resulted in complete loss of activity, suggesting a role in either protein conformation or catalysis. The most informative results were obtained from the studies of histidine 174. Mutagenesis of this histidine to asparagine or glutamine altered reactivity with substrate and reduced inhibition by diethylpyrocarbonate and rose bengal. These results demonstrate that histidine 174 is critical to function and appears to be involved in binding of hormone.  相似文献   

11.
The pyrimidine de novo nucleotide synthesis consists of 6 sequential steps. Various inhibitors against these enzymes have been developed and evaluated in the clinic for their potential anticancer activity: acivicin inhibits carbamoyl-phosphate-synthase-II, N-(phosphonacetyl)-L- aspartate (PALA) inhibits aspartate-transcarbamylase, Brequinar sodium and dichloroallyl-lawsone (DCL) inhibit dihydroorotate-dehydrogenase, and pyrazofurin (PF) inhibits orotate-phosphoribosyltransferase. We compared their growth inhibition against 3 cell lines from head-and-neck-cancer (HEP-2, UMSCC-14B and UMSCC-14C) and related the sensitivity to their effects on nucleotide pools. In all cell lines Brequinar and PF were the most active compounds with IC50 (50% growth inhibition) values between 0.06–0.37 µM, Acivicin was as potent (IC50s 0.26-1 µM), but DCL was 20-31-fold less active. PALA was most inactive (24–128 µM). At equitoxic concentrations, all pure antipyrimidine de novo inhibitors depleted UTP and CTP after 24 hr exposure, which was most pronounced for Brequinar (between 6–10% of UTP left, and 12–36% CTP), followed by DCL and PF, which were almost similar (6–16% UTP and 12–27% CTP), while PALA was the least active compound (10–70% UTP and 13–68% CTP). Acivicin is a multi-target inhibitor of more glutamine requiring enzymes (including GMP synthetase) and no decrease of UTP was found, but a pronounced decrease in GTP (31–72% left). In conclusion, these 5 inhibitors of the pyrimidine de novo nucleotide synthesis varied considerably in their efficacy and effect on pyrimidine nucleotide pools. Inhibitors of DHO-DH were most effective suggesting a primary role of this enzyme in controlling pyrimidine nucleotide pools  相似文献   

12.
Acivicin is an antitumor agent known to inhibit cell growth. A new prodrug 9b of acivicin 10 was synthesized, based on a p-hydroxybenzylcarbamate self-immolative spacer capable to release acivicin under esterase activity. The prodrug includes a maleimide-containing arm for linkage with thiol-containing macromolecules such as antibodies. This molecule is intended for the conception of bioconjugates to target an inactive acivicin precursor to tumor cells, when linked to a monoclonal antibody (mAb) which recognizes a tumor-specific antigen. Prodrug cleavage by plasmatic esterases will then restore the acivicin's activity toward tumor cells. We report here the synthesis and the in vitro characteristics of the prodrug. As expected, its inhibitory activity against the gamma-glutamyl transpeptidase (gamma-GT) enzyme and its cytotoxicity towards HL-60 cells were highly reduced compared to the parent drug. The chemical and plasmatic hydrolysis kinetics of the compound was studied by HPLC. The prodrug is stable, being slowly hydrolyzed in pH 7.6 buffer at 37 degrees C with a half-life of 37 h. It is converted into an active acivicin under the effect of pig liver esterase, and its half-life in human plasma is 3 h. These results indicate this compound may be further used as a prodrug-antibody conjugate, to target acivicin to malignant cells.  相似文献   

13.
Glutamine synthetase from a marine enterobacterium, Photobacterium phosphoreum, was purified to homogeneity from cells grown in glycerol-yeast extract medium. The purified enzyme had a molecular weight of approximately 670,000 and a subunit size of 56,000, i.e. larger than that of the enzyme from E. coli. Regulation of the glutamine synthetase activity by adenylylation/deadenylylation was demonstrated on snake venom phosphodiesterase treatment. The state of adenylylation appeared to influence both the biosynthetic and gamma-glutamyltransferase activities of P. phosphoreum glutamine synthetase similar to in the case of the E. coli enzyme. The enzyme activity was controlled by adenylylation and possibly in combination with feedback inhibition by alanine, serine, and glycine, metabolites which are especially effective in inhibiting P. phosphoreum glutamine synthetase. When either Mn2+ or Mg2+ was added to the relaxed (divalent cation-free) enzyme, similar UV-difference spectra were obtained for the enzyme, indicating that the conformational states induced by these cations were also similar. The profile of these spectra varied from those published for E. coli, and three peaks were four 1 at 282.5, 288.5, and 298 nm.  相似文献   

14.
The relationships of five feedback inhibitors for the Bacillus licheniformis glutamine synthetase were investigated. The inhibitors were distinguishable by differences in their competitive relationship for the substrates of the enzyme. Mixtures of l-glutamine and adenosine-5'-monophosphate (AMP) or histidine and AMP caused synergistic inhibition of glutamine synthesis. Histidine, alanine, and glycine acted antagonistically toward the l-glutamine inhibition. Alanine acted antagonistically toward the glycine and histidine inhibitions. Independence of inhibitory action was observed with the other pairs of effectors. Possible mechanisms by which the inhibitors may interact to control glutamine synthesis are discussed. The low rate of catalysis of the glutamyl transfer reaction by the B. licheniformis glutamine synthetase can be attributed to the fact that l-glutamine serves both as a substrate and an inhibitor for the enzyme. Effectors which act antagonistically toward the l-glutamine inhibition stimulated glutamotransferase activity. The stimulation was not observed when d-glutamine was used as substrate for the glutamyl transfer reaction.  相似文献   

15.
γ-Glutamyltranspeptidase (GGT) catalyzes the cleavage of such γ-glutamyl compounds as glutathione, and the transfer of their γ-glutamyl group to water or to other amino acids and peptides. GGT is involved in a number of biological phenomena such as drug resistance and metastasis of cancer cells by detoxification of xenobiotics. Azaserine and acivicin are classical and irreversible inhibitors of GGT, but their binding sites and the inhibition mechanisms remain to be defined. We have determined the crystal structures of GGT from Escherichia coli in complex with azaserine and acivicin at 1.65 Å resolution. Both inhibitors are bound to GGT at its substrate-binding pocket in a manner similar to that observed previously with the γ-glutamyl-enzyme intermediate. They form a covalent bond with the Oγ atom of Thr391, the catalytic residue of GGT. Their α-carboxy and α-amino groups are recognized by extensive hydrogen bonding and charge interactions with the residues that are conserved among GGT orthologs. The two amido nitrogen atoms of Gly483 and Gly484, which form the oxyanion hole, interact with the inhibitors directly or via a water molecule. Notably, in the azaserine complex the carbon atom that forms a covalent bond with Thr391 is sp3-hybridized, suggesting that the carbonyl of azaserine is attacked by Thr391 to form a tetrahedral intermediate, which is stabilized by the oxyanion hole. Furthermore, when acivicin is bound to GGT, a migration of the single and double bonds occurs in its dihydroisoxazole ring. The structural characteristics presented here imply that the unprecedented binding modes of azaserine and acivicin are conserved in all GGTs from bacteria to mammals and give a new insight into the inhibition mechanism of glutamine amidotransferases by these glutamine antagonists.  相似文献   

16.
The feedback inhibition of glutamine synthetase was investigated by use of partially purified enzyme preparations from Salmonella typhimurium, Micrococcus sodonensis, Pseudomonas fluorescens, Bacillus cereus, Bacillus licheniformis, Clostridium pasteurianum, Rhodospirillum rubrum, Neurospora crassa, Candida utilis, and Chlorella pyrenoidosa. Inhibition analyses indicated that the enzyme of each organism can be effectively regulated with mixtures of end products from the diverse pathways of glutamine metabolism. When tested individually, tryptophan, histidine, alanine, glycine, glutamine, 5'-adenylate (AMP), cytidine-5'-triphosphate, carbamyl phosphate, and glucosamine-6-phosphate gave limited inhibition. In most cases, the inhibitors were independent in their action, and cumulative degrees of inhibition were obtained with mixtures of these end products. In contrast, with the glutamine synthetases of the two Bacillus species, the simultaneous presence of AMP and histidine (or AMP and glutamine) gave inhibition greater than the sum of the amounts of inhibition caused by either inhibitor alone. Also, alanine and carbamyl phosphate acted synergistically to inhibit the enzyme from N. crassa. The remarkable similarity in the overall patterns of end-product inhibition observed with the enzymes from different sources indicates that these diverse organisms have evolved comparable mechanisms for the regulation of glutamine metabolism. Nevertheless, the enzymes from different sources do differ significantly in their physical and catalytic properties, as was demonstrated by dissimilarities in their purification behaviors, specificity for nucleotide substrate, ability to catalyze the glutamyl transfer reaction, and ability to utilize Mn(++) and Mg(++) as activators for the biosynthetic reaction.  相似文献   

17.
The amide nitrogen atom of glutamine is incorporated into the pyrimidine moiety of thiamin in Escherichia coli and Saccharomyces cerevisiae. However, addition of casamino acids to the medium increases incorporation of the amide nitrogen atom of glutamine in E. coli, but decreases it in S. cerevisiae. This suggests that some amino acids other than glutamine in casamino acids are more direct precursors of the pyrimidine moiety in S. cerevisiae. To determine the direct precursor, we investigated the competitive effect of 14N-amino acids on the incorporation of 15NH4Cl into the pyrimidine moiety and found that histidine decreased the incorporation of 15N. Thus, histidine was concluded to be the direct precursor of the nitrogen atom of the pyrimidine moiety of thiamin in S. cerevisiae.  相似文献   

18.
The first step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in plant plastids and most eubacteria is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a recently described transketolase-like enzyme. To identify key residues for DXS activity, we compared the amino acid sequence of Escherichia coli DXS with that of E. coli and yeast transketolase (TK). Alignment showed a previously undetected conserved region containing an invariant histidine residue that has been described to participate in proton transfer during TK catalysis. The possible role of the conserved residue in E. coli DXS (H49) was examined by site-directed mutagenesis. Replacement of this histidine residue with glutamine yielded a mutant DXS-H49Q enzyme that showed no detectable DXS activity. These findings are consistent with those obtained for yeast TK and demonstrate a key role of H49 for DXS activity.  相似文献   

19.
The inhibitors histidine and AMP cause the enzyme ATP phosphoribosyltransferase of E. coli to associate into a hexamer from its initial dimeric form. The behaviour of these inhibitors has been studied by three different methods. I) Equilibrium dialysis studies have shown that one mole of dimeric enzyme (67,000 g) binds one mole of histidine. II) By kinetic inhibition of the reaction studied at 21, 25 and 38 degrees C the enthalpy changes in the process of histidine and of AMP inhibition have been deduced. The inhibition has also been studied in function of enzyme concentration and temperature. The inhibition appears to be slightly negatively cooperative for histidine and positively cooperative for AMP. In neither case is it possible to obtain 100% maximal inhibition. III) By microcalorimetric analysis the values obtained for the enthalpies of histidine and of AMP interaction with the enzyme are similar.  相似文献   

20.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号