首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bovine aortic endothelial cultures readily take up docosahexaenoic acid (DHA). Most of the DHA was incorporated into phospholipids, primarily in ethanolamine and choline phosphoglycerides, and plasmalogens accounted for 34% of the DHA contained in the ethanolamine fraction after a 24-h incubation. The retention of DHA in endothelial phospholipids was not greater than other polyunsaturated fatty acids and unlike arachidonic and eicosapentaenoic acids, DHA did not continue to accumulate in the ethanolamine phosphoglycerides after the initial incorporation. About 15% of the [14C(U)]DHA uptake was retroconverted to docosapentaenoic and eicosapentaenoic acids in 24 h. Some of the newly incorporated [14C(U)]DHA was released when the cells were incubated subsequently in a medium containing serum and albumin. The released radioactivity was in the form of free fatty acid and phospholipids and after 24 h, 11% was retroconverted to docosapentaenoic and eicosapentaenoic acids. Total DHA uptake was decreased only 10% by the presence of a 100 microM mixture of physiologic fatty acids, but as little as 10 microM docosatetraenoic acid reduced DHA incorporation into phospholipids by 25%. DHA was not converted to prostaglandins or lipoxygenase products by the endothelial cultures. When DHA was available, however, less arachidonic acid was incorporated into endothelial phospholipids, and less was converted to prostacyclin (PGI2). Enrichment of the endothelial cells with DHA also reduced their capacity to subsequently produce PGI2. These findings indicate that endothelial cells can play a role in DHA metabolism and like eicosapentaenoic acid, DHA can inhibit endothelial PGI2 production when it is available in elevated amounts.  相似文献   

2.
We describe the effect of (-) epigallocatechin gallate (EGCg), one of catechins known in tea, on the prostacyclin (PGI) production by bovine aortic endothelial cells. The amounts of 6-keto-PGF(1alpha) and Delta(17)-6-keto-PGF(1alpha), stable metabolites of PGI(2) and PGI(3), released in culture medium were measured using gas chromatography/selected ion monitoring (GC/SIM). The prostacyclin production of endothelial cells was increased by EGCg in a dose- and time-dependent manner. The effect by EGCg was stronger than any other catechins (catechin, epicatechin, epigallocatechin, and epicatechin gallate). When endothelial cells incubated with EGCg and arachidonic acid (AA) or eicosapentaenoic acid (EPA), PGI(2), and PGI(3) production were increased greater than those incubated with AA or EPA alone. Furthermore, gallic acid, that also has a pyrogallol structure, increased PGI(2) production. These observations indicate that catechins increase the prostacyclin production and that the pyrogallol structure is significant to this function.  相似文献   

3.
Exogenously hypercholesterolemic (ExHC) rats were fed on an atherogenic diet supplemented with 1% each of either ethyl ester docosahexaenoic acid [EE-DHA, 22:6(n-3)], ethyl ester eicosapentaenoic acid [EE-EPA, 20:5(n-3)] or safflower oil (SO) for 6 months. The rats fed on the diets containing EE-EPA or EE-DHA, compared with those fed on SO, had lower serum cholesterol and triacylglycerol levels, less aggregation of platelets and slower progress of intimal thickening in the ascending aorta. Relative to the SO-fed rats, both of the (n-3) fatty acid-fed rats had a significantly reduced proportion of arachidonic acid in the platelet and aortic phospholipids, and lower production of thromboxane A2 by platelets and of prostacyclin by the aorta. These results suggest that EPA and DHA are similarly involved in preventing atherosclerosis development by reducing hypercholesterolemia and modifying the platelet functions.  相似文献   

4.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

5.
Human umbilical vein endothelial cells incorporate eicosapentaenoic acid (EPA) when this fatty acid is present in the culture medium. From 30 to 70% of the uptake remains as EPA, and much of the remainder is elongated to docosapentaenoic acid. All of the cellular glycerophospholipids become enriched with EPA and docosapentaenoic acid, with the largest increase in EPA occurring in the choline glycerophospholipids. When this fraction is enriched with EPA, it exhibits a large decrease in arachidonic acid content. Cultures exposed to tracer amounts of [1-14C]linolenic acid in 5% fetal bovine serum convert as much as 17% of the radioactivity to EPA. The conversion is reduced, however, in the presence of either 20% fetal bovine serum or 50 microM linolenic acid. Like arachidonic acid, some newly incorporated EPA was released from the endothelial cells when the cultures were exposed to thrombin. However, as compared with arachidonic acid, only very small amounts of EPA were converted to prostaglandins. Cultures enriched with EPA exhibited a 50 to 90% reduction in capacity to release prostacyclin (PGI2) when subsequently stimulated with thrombin, calcium ionophore A23187, or arachidonic acid. The degree of inhibition was dependent on the time of exposure to EPA and the EPA concentration, and it was not prevented by adding a reversible cyclooxygenase inhibitor, ibuprofen, during EPA supplementation. EPA appears to decrease the capacity of the endothelial cells to produce PGI2 in two ways: by reducing the arachidonic acid content of the cell phospholipid precursor pools and by acting as an inhibitor of prostaglandin production. These findings suggest that regimens designed to reduce platelet aggregation and thrombosis by EPA enrichment may also reduce the capacity of the endothelium to produce PGI2.  相似文献   

6.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

7.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

8.
The n-3 fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) regulate hepatic lipid and glucose metabolism; however, EPA and DHA are naturally present in human diets in foods of animal origin, which are generally high in protein with variable triglycerides and uniformly low amounts of carbohydrate. We used dietary information for 611 individuals of 1.5-66 years to address whether EPA and DHA are associated with protein, but not fat intake. EPA, DHA and arachidonic acid (20:4n-6) intakes were positively associated with protein, but not fat intake, whereas linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) intakes were positively associated with fat, but not protein intake. Children 1-3 years of age have lower EPA and DHA intakes than children over 4 years or adults. Recommendations regarding EPA and DHA intake should focus on protein sources, rather than diet fat, and consider their potential roles in amino acid and protein metabolism.  相似文献   

9.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

10.
Atherosclerosis has an important inflammatory component and acute cardiovascular events can be initiated by inflammatory processes occurring in advanced plaques. Fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or associated with, the fatty acid composition of cell membranes. Human inflammatory cells are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the marine n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these are usually biologically weak. EPA and DHA give rise to resolvins which are anti-inflammatory and inflammation resolving. EPA and DHA also affect production of peptide mediators of inflammation (adhesion molecules, cytokines, etc.). Thus, the fatty acid composition of human inflammatory cells influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 polyunsaturated fatty acids (PUFAs) may contribute to their protective actions towards atherosclerosis and plaque rupture.  相似文献   

11.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF1 alpha formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF1 alpha production by arterial tissue does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

12.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

13.
Our aim was to examine the docosahexaenoic acid (DHA; 22:6n-3) status of pregnant African-American women reporting to the antenatal clinic at Wayne State University in a longitudinal study design. Fatty acid compositions of plasma and erythrocyte total lipid extracts were determined and food frequency surveys were administered at 24 weeks of gestation, delivery, and 3 months postpartum for participants (n = 157). DHA (mean +/- SD) in the estimated total circulating plasma was similar at gestation (384 +/- 162 mg) and delivery (372 +/- 155 mg) but was significantly lower at 3 months postpartum (178 +/- 81 mg). The relative weight percentage of DHA and docosapentaenoic acid n-6 (DPAn-6; 22:5n-6) decreased postpartum, whereas their respective metabolic precursors, eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (AA; 20:4n-6), increased. Similar results were found in erythrocytes. Dietary intake of DHA throughout the study was estimated at 68 +/- 75 mg/day. The relative amounts of circulating DHA and DPAn-6 were increased during pregnancy compared with 3 months postpartum, possibly via increased synthesis from EPA and AA. The low dietary intake and blood levels of DHA in this population compared with others may not support optimal fetal DHA accretion and subsequent neural development.  相似文献   

14.
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.  相似文献   

15.
The objective of this study was to determine the effects of enrichment with n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the differentiation of 3T3-L1 preadipocytes. Enrichment with DHA but not EPA significantly increased the differentiation markers compared to control differentiated cells. DHA compared to EPA treatment led to a greater increase in adiponectin secretion and, conditioned media collected from DHA treated cells inhibited monocyte migration. Moreover, DHA treatment resulted in inhibition of pro-inflammatory signaling pathways. DHA treated cells predominantly accumulated DHA in phospholipids whereas EPA treatment led to accumulation of both EPA and its elongation product docosapentaenoic acid (DPA), an n-3 fatty acid. Of note, adding DPA to DHA inhibited DHA-induced differentiation. The differential effects of EPA and DHA on preadipocyte differentiation may be due, in part, to differences in their intracellular modification which could impact the type of n-3 fatty acids incorporated into the cells.  相似文献   

16.
Voltage-gated cardiac Na(+) channels are composed of alpha- and beta(1)-subunits. In this study beta(1)-subunit was cotransfected with the alpha-subunit of the human cardiac Na(+) channel (hH1(alpha)) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na(+) currents were assessed. Current density was significantly greater in HEK293t cells coexpressing alpha- and beta(1)-subunits (I(Na,alpha beta)) than in HEK293t cells expressing alpha-subunit alone (I(Na,alpha)). Compared with I(Na,alpha), the voltage-dependent inactivation and activation of I(Na,alpha beta) were significantly shifted in the depolarizing direction. In addition, coexpression with beta(1)-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n-3)] significantly reduced I(Na,alpha beta) in a concentration-dependent manner and at 5 microM shifted the midpoint voltage of the steady-state inactivation by -22 +/- 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n-3)], alpha-linolenic acid [C18:3(n-3)], and conjugated linoleic acid [C18:2(n-6)] at 5 microM significantly inhibited both I(Na,alpha beta) and I(Na,alpha.) In contrast, saturated and monounsaturated fatty acids had no effects on I(Na,alpha beta). This finding differs from the results for I(Na,alpha), which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of beta(1)-subunit with hH1(alpha) modifies the kinetics and fatty acid block of the Na(+) channel.  相似文献   

17.
We previously reported that docosahexaenoic acid (DHA) attenuated tumor necrosis factor (TNF)-induced apoptosis in human monocytic U937 cells (J. Nutr. 130: 1095-1101, 2000). In the present study, we examined the effects of DHA and other polyunsaturated fatty acids (PUFA) on TNF-induced necrosis, another mode of cell death, using L929 murine fibrosarcoma cells. After preincubation with PUFA conjugated with BSA for 24 h, cells were treated with TNF or TNF+actinomycin D (Act D). Preincubation of cells with DHA enriched this polyunsaturated acid in the phospholipids and attenuated cell death induced by either TNF or TNF+Act D. When cells were treated with TNF alone, DNA laddering was not detected, and cells were coincidently stained with both annexin V-FITC and propidium iodide, indicating that the death mode was necrotic. TNF+Act D predominantly induced necrosis, although concurrent apoptotic cell death was also observed in this case. Preincubation with oleic acid, linoleic acid or 20:3(n-3) did not affect TNF-induced necrosis. Conversely, supplementation with n-3 docosapentaenoic acid (DPAn-3) or eicosapentaenoic acid (EPA) reduced necrotic cell death, but to a lesser extent in comparison with DHA. Unlike the case of U937 cell apoptosis, arachidonic acid (AA) significantly attenuated L929 cell necrosis, and 20:3(n-6) or 22:4(n-6) showed similar or less activity, respectively. Statistical evaluation indicated that the order of effective PUFA activity was DHA>DPAn-3> or =EPA>AA approximately 20:3(n-6)> or =22:4(n-6). One step desaturation, C2 elongation or C2 cleavage within the n-6 or n-3 fatty acid group was probably very active in L929 cells, because AA, synthesized from 20:3(n-6) or 22:4(n-6), and C22 fatty acids, synthesized from AA or EPA, were preferentially retained in cellular phospholipids. These observations suggested that attenuation of TNF-induced necrosis by the supplementation of various C20 or C22 polyunsaturated fatty acids is mainly attributable to the enrichment of three kinds of polyunsaturated fatty acids, i.e., DHA, DPAn-3 or AA, in phospholipids. Among these fatty acids, DHA was the most effective in the reduction of L929 necrosis as observed in the case of U937 apoptosis. This suggests that DHA-enriched membranes can protect cell against TNF irrespective of death modes and that membranous DHA may abrogate the death signaling common to necrosis and apoptosis.  相似文献   

18.
Embryonic mortality in cattle may occur because of inadequate inhibition of uterine secretion of prostaglandin (PG) F2alpha mediated by bovine interferon-tau (bIFN-tau). The objectives of the present study were to determine whether polyunsaturated fatty acids inhibit secretion of PGF2alpha from bovine endometrial cells induced by stimulating protein kinase C with phorbol 12,13 dibutyrate (PDBu) and to investigate possible mechanisms of action. Confluent cells were exposed for 24 h to 100 microM of linoleic, arachidonic (AA; C20:4, n-6), linolenic (LNA; C18:3, n-3), eicosapentaenoic (EPA; C20:5, n-3), or docosahexaenoic (DHA; C22:6, n-3) acid. After incubation, cells were washed and stimulated with PDBu. The EPA, DHA, and LNA attenuated secretion of PGF2alpha in response to PDBu. The EPA and DHA were more potent inhibitors than LNA. The EPA inhibited secretion of PGF2alpha at 6.25 microM. Secretion of PGF2alpha in response to PDBu decreased with increasing incubation time with EPA. Both bIFN-tau and EPA inhibited secretion of PGF2alpha, and their inhibitory effects were additive. The bIFN-tau, but not EPA, reduced the abundance of PG endoperoxide synthase-2 (PGHS-2) mRNA. Incubation with 100 microM EPA, DHA, or AA for 24 h followed by treatment with PDBu did not affect concentrations of PGHS-2 and phospholipase A2 proteins. The EPA and DHA inhibit secretion of PGF2alpha through a mechanism different from that of bIFN-tau. The effect of EPA on PGF2alpha secretion may be caused by competition with AA for PGHS-2 activity or reduction of PGHS-2 activity. The use of EPA and DHA to inhibit uterine secretion of PGF2alpha and to improve embryonic survival in cattle warrants further investigation.  相似文献   

19.
In diabetes there is a decrease in membrane arachidonic (AA) and docosahexaenoic (DHA) acids and a concomitant increase in linoleic (LA) and alpha-linolenic (ALA) acids. This metabolic perturbation is thought to be due to impaired activity of Delta(6)- and Delta(5)-desaturases. Triacylglycerols are the major lipid pool in plasma and liver tissue and have a significant influence on fatty acid composition of membrane and circulating phospholipids. Data on the distribution of n-6 and n-3 polyunsaturated fatty acids of triacylglycerols in diabetes are sparse. We investigated whether streptozotocin-induced diabetes in Sprague-Dawley rats alters fatty acid composition of triacylglycerols and free fatty acids of liver tissue. The animals were fed a breeding diet prior to mating, during pregnancy and lactation. On days 1-2 of pregnancy, diabetes was induced in 10 of the 25 rats. Liver was obtained at post partum day 16 for analysis. Relative levels of LA (P=0.03), dihomo-gamma-linolenic acid (DHGLA) (P=0.02), AA (P=0.049), total n-6 (P=0.02), ALA (P=0.013), eicosapentaenoic acid (EPA) (P=0.004), docosapentaenoic acid (22:5n-3, DPA) (P=0.013), DHA (P=0.033), n-3 metabolites (P=0.015) and total n-3 (P=0.011) were significantly higher in the triacylglycerols of the diabetics compared with the controls. Similarly, liver free fatty acids of the diabetics had higher levels of LA (P=0.0001), DHGLA (P=0.001), AA (P=0.001), n-6 metabolites (P=0.002), total n-6 (P=0.0001), ALA (P=0.003), EPA (P=0.015), docosapentaenoic (22:5n-3, P=0.003), DHA (P=0.002), n-3 metabolites (P=0.005) and total n-3 (P=0.001). We conclude that impaired activity of desaturases and/or long chain acyl-CoA synthetase could not explain the higher levels of AA, DHA and n-6 and n-3 metabolites in the diabetics. This seems to be consistent with an alteration in the regulatory mechanism, which directs incorporation of polyunsaturated fatty acids either into triacylglycerols or phospholipids.  相似文献   

20.
Previous studies have reported that polyunsaturated fatty acids (PUFAs) of nutritional interest may influence arachidonic acid (20:4n-6) metabolism in both platelets and endothelium, when tested separately. In the present study, platelets (PL) and cultured endothelial cells (EC) were first pre-enriched with eight different PUFAs for a two hour incubation in the presence of free fatty acid albumin pre-coated with each acid. EC, PL or both cell populations in combination, were then stimulated by thrombin (0.1 U/ml) for five minutes. Prostanoids were extracted, purified by thin-layer chromatography, and TxB2, 6-keto-PGF1 alpha and PGE2 were quantitated by radioimmunoassays. Prostanoids or dihomoprostanoids formed from cyclooxygenase substrates other than 20:4n-6 were measured by gas chromatography-negative chemical ionisation mass-spectrometry (GC-MS). When co-incubated with EC, PL produced less TxB2 (-15 and -85% in the absence and presence of thrombin, respectively). In contrast, 6-keto-PGF1 alpha increased by 189 (basal conditions) and 358% (thrombin stimulation) when PL were added to EC, in agreement with PGH2 transfers from PL to EC. PGE2, produced by both cell populations, reached amounts which roughly represent the sum of those measured in PL and EC alone, except when cells were pre-enriched with linoleic (18:2n-6) and the n-3 family fatty acids (18:3-, 20:5- and 22:6n-3). 6-keto-PGF1 alpha was markedly inhibited by adrenic acid (22:4n-6), while this acid was converted into dihomo-6-keto-PGF1 alpha, the stable metabolite of dihomoprostacyclin. 22:4n-6 also inhibited TxB2 formation and was converted into dihomo-TxA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号