首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Male Wistar rats received an aqueous solution of ammonium metavanadate (AMV) of 0.15 mg/V/ml concentration instead of water for 14 days. The erythrocyte count and haemoglobin level in blood were not changed; the haematocrit index was slightly increased. The spontaneous lipid peroxidation in kidney and liver homogenates was increased. The Fe(II)- or ascorbate-induced lipid peroxidation was more pronounced in the kidney than in the liver. No changes in lipid peroxidation were observed in erythrocytes after AMV treatment. The AMV treatment resulted in a decrease in the activity of the antioxidant enzymes, catalase and glutathione peroxidase in the kidney and liver; the cytosolic Cu,Zn-SOD and mitochondrial Mn-SOD were unchanged. The activity of the enzymes in blood was not changed. The results are discussed with a view to the participation of lipid peroxidation in vanadium toxicity.  相似文献   

2.
The senescence-accelerated prone mouse strain 8 (SAMP8) exhibits a remarkable age-accelerated deterioration in learning and memory. In this study, we identified carbonyl modification, a marker of protein oxidation, in liver and brain of SAMP8 from peptide mass fingerprints using MALDI-TOF mass spectrometry in combination with LC-MS/MS analysis. Carbonyl modification of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in liver at 3 month and hippocampal cholinergic neurostimulating peptide precursor protein (HCNP-pp) in brain at 9 month were higher in SAMP8 compared with control SAMR1. We demonstrated carbonyl modification of purified Cu,Zn-SOD increased by the reaction with H2O2. Therefore, progressive accumulation of oxidative damage to Cu,Zn-SOD, may cause dysfunction of defense systems against oxidative stress in SAMP8 with a higher oxidative states, leading to acceleration of aging. Furthermore, carbonyl modification of HCNP-pp may be involved in pathophysiological alterations associated with deterioration in the learning and memory in the brain seen in SAMP8.  相似文献   

3.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

4.
Natural dicarbonyls, which may be accumulated during oxidative stress in atherosclerosis (e.g. malondialdehyde) or carbonyl stress in diabetes mellitus (glyoxal and methylglyoxal) effectively inhibited activities of commercial preparations of the antioxidant enzymes: Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and Se-contained glutathione peroxidase from human and bovine erythrocytes, and also rat liver glutathione-S-transferase. After incubation of human erythrocytes with 10 mM of each investigated dicarbonyls the decrease of intracellular Cu,Zn-SOD was observed. The decreased activity of erythrocyte Cu,Zn-SOD was also detected in patients with diabetes mellitus type 2 with carbohydrate metabolism impairments but effective sugar-lowered therapy was accompanied by the increase of this enzyme activity. The increase of erythrocytes Cu,Zn-SOD activity in diabetic patients treated with metformin (which may utilize methylgly-oxal) was higher than in erythrocytes of diabetic patients subjected to traditional therapy.  相似文献   

5.
The effect of aging on the status of macrominerals and trace elements in tissues was studied using two strains (SAMP1 and SAMR1) of senescence accelerated mouse. Two-month-old, 6-mo-old, and 10-mo-old female SAMP1 and SAMR1 mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, phosphorus, sulfur, sodium, and potassium concentrations in blood, liver, kidney, brain, and tibia of the mice were determined. The copper concentration in the brain was significantly increased with age in SAMP1 and SAMR1. In addition, the brain copper levels in SAMP1 were significantly higher than that in SAMR1 at respective ages. The calcium concentration in the kidney was significantly increased with age, but the copper and phosphorus concentrations significantly decreased with age in SAMP1 and SAMR1. In the liver of SAMR1, all minerals measured in this study except for sodium and potassium were significantly decreased with age. In addition, all mineral concentrations in the liver of 2-mo-old mice in SAMR1 except for copper and sodium were markedly higher than those in SAMP1 of the same age. These results suggest that the genetic factor is related to the age-associated mineral changes in tissues.  相似文献   

6.
Cho YM  Bae SH  Choi BK  Cho SY  Song CW  Yoo JK  Paik YK 《Proteomics》2003,3(10):1883-1894
The senescence-accelerated mouse (SAM) is a useful animal model to study aging or age-associated disorders due to its inherited aging phenotype. To investigate proteins involved in the aging process in liver, we compared the young (4- or 20-week old) and the aged group (50-week-old) of SAMP8 (short life span) and SAMR1 (control) mice, and identified 85 differentially expressed distinct proteins comprising antioxidation, glucose/amino acid metabolism, signal transduction and cell cycle systems using proteomics tools. For the antioxidation system, the aged SAMP8 mice showed a large increase in glutathione peroxidase and decreases in glutathione-S-transferase and peroxiredoxin, ranging from 2.5- to 5-fold, suggesting lower detoxification potentials for oxidants in the aged SAMP8 liver. Similarly, levels of key glycolytic enzymes decreased greatly in the aged SAMP8 compared to SAMR1, indicating a disturbance in glucose homeostasis that may be closely related to the typical deficits in learning and memory of the aged SAMP8. Protein profiles of amino acid metabolic enzymes suggest that accumulation of glutamine and glutamate in tissues of the aged SAMP8 may be due to hyperexpression of ornithine aminotransferase and/or glutamate dehydrogenase. Decreases in levels of proteins involved in signal transduction/apoptosis (e.g., cathepsin B) in the aged SAMP8 may support the previously proposed negative relationship between apoptosis and aging. However, the changes described above were not markedly seen in the young group of both strains. For cell cycle systems, levels of selenium binding protein increased about four-fold with age in SAMP8. Yet, almost no change occurred in either the young or the aged SAMR1, which may explain problems associated with cell proliferation and tissue regeneration in the aged SAMP8. In conclusion, composite profiles of key proteins involved in age-related processes enable assessment of accelerated senescence and the appearance of senescence-related pathologies in the aged SAMP8.  相似文献   

7.
A battery of enzymes from the eukaryotic antioxidant defense system was measured in salivary gland and in whole body extract of fourth instar larvae of Chironomus ramosus with an objective of finding any clue for the dipteran insect's capacity to tolerate heavy doses of ionizing radiation. Levels of activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-Px) were quantified in 30 days old larvae exposed to LD20 dose of gamma radiation. Compared to controls, activity of Cu,Zn-SOD increased 3 to 4 fold and catalase 2 fold in response to ionizing radiation stress, while activities of GR and GSH-Px enzymes were decreased. Among the other SOD isoenzymes, our results showed comparable levels of Mn-SOD and Cu,Zn-SOD activity in control and irradiated groups of larvae. The increase in levels of the Cu,Zn-SOD isoenzyme was also confirmed by Western blot and zymography supported by densitometric quantification. No evidence of Fe-SOD was found in C. ramosus larvae. These findings could help to explain the persistence of natural populations of Chironomus in radioactively contaminated regions.  相似文献   

8.
The prevalence of liver diseases emphasizes the need of animal models to research on the mechanism of disease pathogenesis. Furthermore, most of the liver pathologies have the oxidative stress as an important component. The senescence-accelerated mouse strain SAMP8 was proposed as a valuable animal model for the study of liver diseases. To gain a better understanding of the mechanisms underlying degenerative processes in SAMP8 mice livers, we studied the oxidative-induced damage in 5-month-old SAMP8 mice and SAMR1, senescence-accelerated-resistant mice. We found profound differences in the antioxidant response to aging between sexes, with males displaying lowest levels of main antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) in SAMP8; whereas females had no difference in their activities, except for GR, when compared with their SAMR1 controls. The results obtained show the binomial SOD/CAT as an important factor for counteracting reactive oxygen species-dependent damage. There were not pathological differences at the morphological level between both strains, although the decay in protection against free radicals had an immediate response by increasing lipid and protein oxidative damage in SAMP8 mice liver. At 5 months, both male and female SAMP8 mice confront the oxidative stress challenge to different extents. Indeed, proteins seem to be the most vulnerable biomolecule in SAMP8 male mice.  相似文献   

9.
The aim of this work was to determine the immunolocalization of the antioxidant enzymes catalase, Cu,Zn-superoxide dismutase (SOD), Mn-SOD, and glutathione peroxidase (GPX) in the bivalve mollusks Mytilus galloprovincialis and Crassostrea sp., the crab Carcinus maenas, and the teleostean fish Mugil cephalus. By immunoblotting, crossreactivity between antibodies and the corresponding proteins in the digestive gland/hepatopancreas of invertebrates and the fish liver was demonstrated. Immunohistochemical studies showed that the stomach epithelium was strongly immunostained for catalase in mollusks. In crabs, ducts showed stronger immunostaining than tubules and in mullet hepatocytes the reaction appeared in discrete granules corresponding to peroxisomes. With regard to Cu,Zn-SOD, the apex of the tubule cells in mussels and crabs was distinctly immunostained, whereas in oysters the reaction was more marked in ducts and in mullet liver a uniform diffuse cytoplasmic staining was found. Mn-SOD was strongly positive in mollusk and crab ducts and in mullet periportal hepatocytes. Finally, GPX was not detected in mussels while in oysters a slight reaction was noted in all cell types. In crabs, connective tissue cells and the apex of duct cells were immunostained, but in mullet liver only erythrocytes appeared reactive. Immunoelectron microscopy revealed that catalase was localized in peroxisomes with a dense labeling in fish and less intense labeling in invertebrates. Cu,Zn-SOD was mainly a cytosolic protein although additional positive subcellular sites (peroxisomes, nuclei) were also observed, while Mn-SOD was restricted to mitochondria. GPX was localized in the cytosol, nucleus, and lysosomes, occurring also in peroxisomes of the fish liver. The results presented here provide a basis for future application of the immunodetection techniques to study the possible differential induction of antioxidant enzymes in aquatic organisms subjected to oxidative stress as a result of exposure to environmental pollutants.  相似文献   

10.
Oxidative stress, an imbalance between endogenous levels of oxygen radicals and antioxidative defense, increases with aging. However, it is not clear which of these two factors is the more critical. To clarify the production of oxygen radicals increases with age, we examined oxygen radical-dependent chemiluminescent signals in ex vivo brain slices using a novel photonic imaging method. The chemiluminescent intensity was significantly decreased by the membrane permeable superoxide dismutase (SOD)/catalase mimic, but not by Cu,Zn-SOD. Inhibitors for complex I, III, and IV of the mitochondrial electron transport chain transiently enhanced the chemiluminescent signal. The superoxide-dependent chemiluminescent intensity in senescence accelerated mouse (SAM) brain tissues increases with age. Moreover, the slope of the age-dependent increase was steeper in SAMP10, a strain characterized by a short lifespan and atrophy in the frontal cerebral cortex, than the senescence-resistant strain SAMR1, which has a longer lifespan. An increase in chemiluminescence with age was also observed in C57/BL6 mice, Wistar rats, and pigeons, although levels of chemiluminescence were lower in the pigeons than murines. The rate of age-related increases of superoxide-dependent chemiluminescence was inversely related to the maximum lifespan of the animals. The activity of superoxide dismutase was unchanged during the aging process in the brain. This suggested that superoxide production itself may increase with age. We speculated that reactive oxygen may be a signal to determine the aging process.  相似文献   

11.
The effects were examined of 6-month intermittent hypobaric (4000 m) exposure on the antioxidant enzyme systems in soleus and tibialis muscles of rats. At the end of the 6-month experimental exposure, the six rats in both the exposed group and the control group were sacrificed. Immunoreactive mitochondrial superoxide dismutase (Mn-SOD) contents were measured as well as the activities of antioxidant enzymes [Mn-SOD, cytosolic SOD (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX)]. Thiobarbituric acid-reactive substances (TBARS) were also determined as an indicator of lipid peroxidation. The high altitude exposure resulted in a marked increase in TBARS content in soleus muscle, suggesting increased levels of oxygen free radicals. Conversely, significant decreases in both Mn-SOD content and activity in solens muscle were oted affer exposure. Such trends were not noticed in tibialis muscle. On the other hand, no significant changes in Cu,Zn-SOD, CAT, or GPX were observed in either muscle. These results suggested that the increases in lipid peroxidation were most probably a result of decreased Mn-SOD function which was more depressed in oxidative than in glycolytic muscle.  相似文献   

12.
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar. Received: 10 January 1997 / Accepted: 28 May 1997  相似文献   

13.
Scavenger enzyme activities in subcellular fractions under polyethylene glycol (PEG)-induced water stress in white clover (Trifolium repens L.) were studied. Water stress decreased ascorbic acid (AA) content and catalase (CAT) activity and increased the contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), and activities of superoxide dismutase (SOD), its various isozymes, ascorbate peroxidase (APOX), and glutathione reductase (GR) in cellular cytosol, chloroplasts, mitochondria, and peroxisomes of Trifolium repens leaves. In both the PEG-treated plants and the control, chloroplastic fractions showed the highest total SOD, APOX, and GR activities, followed by mitochondrial fractions in the case of total SOD and GR activities, whereas cytosolic fractions had the second greatest APOX activity. However, CAT activity was the highest in peroxisomes, followed by the cytosol, mitochondria, and chloroplasts in decreasing order. Although Mn-SOD activity was highest in mitochondrial fractions, residual activity was also observed in cytosolic fractions. Cu/Zn-SOD and Fe-SOD were observed in all subcellular fractions; however, the activities were the highest in chloroplastic fractions for both isoforms. Total Cu/Zn-SOD activity, the sum of activities observed in all fractions, was higher than other SOD isoforms. These results suggest that cytosolic and chloroplastic APOX, chloroplastic and mitochondrial GR, mitochondrial Mn-SOD, cytosolic and chloroplastic Cu/Zn-SOD, and chloroplastic Fe-SOD are the major scavenger enzymes, whereas cellular CAT may play a minor role in scavenging of O2 and H2O2 produced under PEG-induced water stress in Trifolium repens.  相似文献   

14.
The relative contributions of catalase and the selenoenzyme glutathione peroxidase (GSH-Px) were elucidated in the rat liver by selectively modulating the activities of these enzymes using dietary selenium (Se) and the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). Increased peroxidation occurred only in Se-deficient rats with markedly reduced cytosolic and mitochondrial GSH-Px activities. Although 3-AT treatment resulted in a 75% reduction of hepatic catalase activity and also a 20% reduction of both cytosolic and mitochondrial superoxide dismutase (SOD) activity, no incremental increase in peroxidation was observed over that associated with Se deficiency. In Se-deficient animals, treatment with 3-AT resulted in a doubling of cytosolic GSH-Px. This was associated with a 49% elevation in hepatic Se suggesting that increased Se may have contributed to the enhanced GSH-Px activity. These results suggest that GSH-Px plays the pivotal role in preventing hepatic peroxidation. Furthermore, the effects of 3-AT in vivo are not restricted to inhibition of catalase activity insofar as it also affects cytosolic GSH-Px activity and cytosolic and mitochondrial SOD activities.  相似文献   

15.
The specific activities of Cu,Zn- and Mn-superoxide dismutases, of glutathione peroxidase and of catalase, the enzymes considered to be specifically involved in the defence of the cell against the partially reduced forms of oxygen, were determined as the function of postnatal age in the early (up to 60 days) period of rat brain development. The enzymes were assayed in the cytoplasmic fraction, in the crude mitochondrial fraction including peroxisomes, and in the mitochondria. The results show that the temporal changes of these enzymes cannot be correlated with each other, thus indicating that they do not concertedly parallel the increasing activity of aerobic brain metabolism during development. Specifically the cytoplasmic fraction shows a gradual increase of the Cu,Zn-superoxide dismutase activity with age, whereas the glutathione peroxidase activity is constant from birth. Furthermore the increase of the mitochondrial Mn-superoxide dismutase as a function of postnatal age is more remarkable than that of the cytoplasmic Cu,Zn-enzyme. Higher activities of catalase in adult animals are detectable only in the subcellular fraction containing peroxisomes, because of the modest catalase activity of the brain. These results indicate independent regulation of the expression of these enzyme activities in the process of brain differentiation and point to a relative deficiency of enzymic protection of the brain differentiation and point to a relative deficiency of enzymic protection of the brain against potentially toxic oxygen derivatives. This situation is similar to the pattern already described in the rat heart and in rat and mouse ascites-tumour cells, at variance with the much more efficient enzyme pattern present in rat hepatocytes.  相似文献   

16.
Oxidants are toxic, but at low doses they can stimulate rather than inhibit the growth of mammalian cells and play a role in the etiology of cancer and fibrosis. The effect of oxidants on cells is modulated by multiple interacting antioxidant defense systems. We have studied the individual roles and the interaction of Cu,Zn-superoxide dismutase (SOD) and catalase (CAT) in transfectants with human cDNAs of mouse epidermal cells JB6 clone 41. Since only moderate increases in these enzymes are physiologically meaningful, we chose the following five clones for in-depth characterization: CAT 4 and CAT 12 with 2.6-fold and 4.2-fold increased catalase activities, respectively, SOD 15 and SOD 3 with 2.3-fold and 3.6-fold increased Cu,Zn-SOD activities, respectively, and SOCAT 3 with a 3-fold higher catalase activity and 1.7-fold higher Cu,Zn-SOD activity than the parent JB6 clone 41. While the increases in enzyme activities were moderate, the human cDNAs were highly expressed in the transfectants. As demonstrated for the clone SOD 15, this discordance between message concentrations and enzyme activities may be due to the low stability of the human Cu,Zn-SOD mRNA in the mouse recipient cells. According to immunoblots the content of Mn-SOD was unaltered in the transfectants. While the activities of glutathione peroxidase were comparable in all strains, the concentrations of reduced glutathione (GSH) were significantly lower in SOD 3 and SOD 15. This decrease in GSH may reflect a chronic prooxidant state in these Cu,Zn-SOD overproducers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Damage to mitochondria as a result of the intrinsic generation of free radicals is theoretically involved in the processes of cellular aging. Herein, we investigated whether acutely administered melatonin, due to its free radical scavenging activity, would influence mitochondrial metabolism. Mitochondrial respiratory activity and respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated-prone mice (SAMP8) and a strain of senescence-accelerated-resistant mice (SAMR1) were measured when the animals were 12 months of age. Respiratory control index (RCI), ADP/O ratio, State 3 respiration and dinitrophenol (DNP)-dependent uncoupled respiration were significantly lower in SAMP8 than in SAMR1. In contrast, State 4 respiration was significantly higher in SAMP8 than in SAMR1. Activities of complexes I and IV in SAMP8 were significantly lower than in SAMR1. Melatonin administration (10mg/kg body weight, intraperitoneally) 1h prior to sacrifice significantly increased RCI, ADP/O ratio, State 3 respiration and DNP-induced uncoupled respiration in SAMP8 while also significantly reducing State 4 respiration in SAMP8. The injection of melatonin also significantly increased complex I activity in both mouse strains and complex IV activity in the liver of SAMP8 mice. These results document an age-related decrease in hepatic mitochondrial function in SAM which can be modified by an acute pharmacological injection of melatonin; the indole stimulated mitochondrial respiratory chain activity which would likely reduce deteriorative oxidative changes in mitochondria that normally occur in advanced age.  相似文献   

18.
Summary The study was undertaken to analyze the effect of pioglitazone on superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), lipid peroxidation products (LPO) and protein carbonyl groups (PCG) in the heart of alloxan-induced diabetic rabbits after 4 and 8 weeks of pioglitazone treatment. In diabetic animals, Cu, Zn-SOD and CAT were elevated by 60 and 55%, and 90 and 77% as compared to controls at 4 and 8 weeks, respectively. GSH-Px, GSSG-R and GSH were diminished by 11, 14 and 33% as compared to controls at 4 or 8 weeks. AA was diminished by 52 and 41%. At P <0.05, pioglitazone normalized the activities of Cu, Zn-SOD, GSH-Px and GSSG-R. The activity of CAT was modified as compared to diabetic non-treated rabbits. After pioglitazone treatment, GSH and AA were increased as compared to diabetic non-treated animals. In diabetic rabbits, LPO was elevated by 52 and 111% and normalized by pioglitazone treatment. PCG was elevated by 72 and 133% and diminished as compared to diabetic non-treated animals at 8 weeks. The study shows that pioglitazone reduces oxidative stress in the heart of diabetic rabbits. In therapy, similar action can improve the cardiovascular system of diabetic patients.  相似文献   

19.
Looking at cholinesterases (ChEs) changes in age-related mental impairment, the expression of ChEs in brain of senescence accelerated-resistant (SAMR1) and senescence accelerated-prone (SAMP8) mice was studied. Acetylcholinesterase (AChE) activity was unmodified and BuChE activity increased twofold in SAMP8 brain. SAMR1 brain contained many AChE-T mRNAs, less BuChE and PRiMA mRNAs and scant AChE-R and AChE-H mRNAs. Their content unchanged in SAMP8 brain. Amphiphilic (G(4)(A)) and hydrophilic (G(4)(H)) AChE and BuChE tetramers, besides amphiphilic dimers (G(2)(A)) and monomers (G(1)(A)) were identified in SAMR1 brain and their distribution was little modified in SAMP8 brain. Blood plasma does not seem to provide the excess of BuChE activity in SAMP8 brain; it probably arises from glial cell changes owing to astrocytosis.  相似文献   

20.
1. In order to test the hypothesis that the alcoholic cardiomyopathy under partial catalase inhibition is associated with the activation of lipid peroxidation in cardiomyocytes (Panchenko et al., Experientia 43, 580-581, 1987), the effects of ethanol and catalase inhibitor 3-amino-1,2,4-triazole (aminotriazole) on rat heart and liver content of reduced glutathione and on the activity of enzymes related to peroxide metabolism: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase were investigated. 2. In accordance with the data obtained by Kino (J. molec, cell. Cardiol. 13, 5-12, 1981), when ethanol (36% of dietary calories) and aminotriazole were simultaneously administered an alcoholic cardiomyopathy developed while in the liver moderate fatty degeneration was revealed. 3. Chronic combined or separate administration of ethanol and aminotriazole was shown to increase glutathione concentration and glutathione-S-transferase activity in rat liver. In the groups of animals which received isocaloric carbohydrates in the diet instead of ethanol the liver glucose-6-phosphate dehydrogenase was increased. 4. Acute and chronic aminotriazole injections led to catalase inactivation and in the latter case also to inhibition of the liver superoxide dismutase and glutathione peroxidase activities. 5. Ethanol and aminotriazole treatment did not alter the glutathione level and the activity of all enzymes tested (except catalase) in rat myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号