首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise causes heat shock (muscle temperatures of up to 45 degrees C, core temperatures of up to 44 degrees C) and oxidative stress (generation of O2- and H2O2), and exercise training promotes mitochondrial biogenesis (2-3-fold increases in muscle mitochondria). The concentrations of at least 15 possible heat shock or oxidative stress proteins (including one with a molecular weight of 70 kDa) were increased, in skeletal muscle, heart, and liver, by exercise. Soleus, plantaris, and extensor digitorum longus (EDL) muscles exhibited differential protein synthetic responses ([3H]leucine incorporation) to heat shock and oxidative stress in vitro but five proteins (particularly a 70 kDa protein and a 106 kDa protein) were common to both stresses. HSP70 mRNA levels were next analyzed by Northern transfer, using a [32P]-labeled HSP70 cDNA probe. HSP70 mRNA levels were increased, in skeletal and cardiac muscle, by exercise and by both heat shock and oxidative stress. Skeletal muscle HSP70 mRNA levels peaked 30-60 min following exercise, and appeared to decline slowly towards control levels by 6 h postexercise. Two distinct HSP70 mRNA species were observed in cardiac muscle; a 2.3 kb mRNA which returned to control levels within 2-3 h postexercise, and a 3.5 kb mRNA species which remained at elevated concentrations for some 6 h postexercise. The induction of HSP70 appears to be a physiological response to the heat shock and oxidative stress of exercise. Exercise hyperthermia may actually cause oxidative stress since we also found that muscle mitochondria undergo progressive uncoupling and increased O2- generation with increasing temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A simple biochemical method for identifying and distinguishing transverse tubule and sarcolemma membranes in preparations of skeletal muscle microsomes is proposed and evaluated. This method is based on the previous observation that the ratio of ouabain to saxitoxin binding sites is five-fold higher in the sarcolemma than the transverse tubule. We measured [3H]saxitoxin and [3H]ouabain binding to microsomes of frog, rat and rabbit muscle in the presence of detergents to expose latent sites. A high density fraction (30--40% sucrose) of the membranes was identified as transverse tubule on the basis of a low ouabain/saxitoxin ratio and its association with sarcoplasmic reticulum. A low density fraction (20--30% sucrose) was identified as transverse tubule containing variable amounts of sarcolemma as judged by a higher ratio of ouabain/saxitoxin sites. Our results suggest that this ratio can be used to determine the surface origin of muscle membrane preparations. Several different methods for purifying transverse tubules were compared by this technique.  相似文献   

3.
We developed an in vitro preparation to investigate shape and stress distribution in the intact rat diaphragm. Our hypothesis was that the diaphragm is anisotropic with smaller compliance in transverse fiber direction than along fibers, and therefore shape change may be small. After the animals were killed (8 rats), the entire diaphragm was excised and fixed into a mold at the insertions. Oxygenated Krebs-Ringer solution was circulated under the diaphragm and perfused over its surface. A total of 20-23 small markers were sutured on the diaphragm surface. At transdiaphragmatic pressure (P(di)) of 3-15 cmH(2)O, curvature was smaller in transverse direction than along fibers. Using finite element analysis we computed membrane tension. At P(di) of 15 cmH(2)O, tension in central tendon was larger than muscle. In costal region maximum principal tension (sigma(1)) is essentially along the fibers and ranged from 6-10 g/cm. Minimum principal tension (sigma(2)) was 0. 3-4 g/cm. In central tendon, sigma(1) was 10-15 g/cm, compared with 4-10 g/cm for sigma(2). The diaphragm was considerably stiffer in transverse fiber direction than along the fibers.  相似文献   

4.
The study of the topological organisation of myocardial cells is a basic requirement for understanding the mechanical design of the normal and pathological heart. Anatomical observations show that cardiac muscle tissue has a highly specialized architecture. We have made new quantitative measurements of fibre orientation through the heart wall by means of polarized light analysis on some thick sections of human fetal heart embedded in a resin and polymerized. A small perturbation method to find an equilibrium solution in a cylindrical left ventricular (LV) geometry with fibres running on toroidal shells of revolution is used to investigate the mechanical behaviour of three human fetal hearts (FH) of 14, 20 and 33 weeks of gestational age. The results of fibre strains and stresses presented for end-systolic state show significant differences when compared to results of the cylindrical geometry with regular helicoidal fibres running on cylindrical surfaces. Moreover, the toroidal shells of revolution explain shear stresses and strains in the transverse plane which also exist in the adult heart.  相似文献   

5.
The abdominal muscles accelerate airflow during expiration and may also influence the end-expiratory volume and configuration of the thorax. Although much is known about their electrical activity, the degree to which they change length during the respiratory cycle has not been previously assessed. In the present study we measured respiratory changes in transverse abdominis length using sonomicrometry in 14 pentobarbital sodium-anesthetized supine dogs and compared length changes to simultaneously recorded tidal volume and transverse abdominis electromyograms (EMG). To determine muscle resting length at passive functional residual capacity (LFRC), the animals were hyperventilated to apnea. The transverse abdominis was electrically active in all animals during resting O2 breathing (eupnea). During inspiration the transverse abdominis lengthened above resting length in all 14 dogs by a mean of 3.7 +/- 1.1% LFRC; during expiration the transverse abdominis shortened below resting length in 13 of 14 dogs by a mean of 4.2 +/- 0.9% LFRC. Increasing hyperoxic hypercapnia (produced in 9 animals) progressively heightened transverse abdominis EMG and progressively increased the extent of muscle shortening below resting length (to 12.6 +/- 3.2% LFRC at a PCO2 of 90 Torr). During single-breath airway occlusion substantial inspiratory lengthening of the transverse abdominis occurred, both during O2 breathing and during CO2 rebreathing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Alpha-sarcoglycan (ASG) is a transmembrane protein of the dystrophin-associated complex, and absence of ASG causes limb-girdle muscular dystrophy. We hypothesize that disruption of the sarcoglycan complex may alter muscle extensibility and disrupt the coupling between passive transverse and axial contractile elements in the diaphragm. We determined the length-tension relationships of the diaphragm of young ASG-deficient mice and their controls during uniaxial and biaxial loading. We also determined the isometric contractile properties of the diaphragm muscles from mutant and normal mice in the absence and presence of passive transverse stress. We found that the diaphragm muscles of the null mutants for the protein ASG show 1) significant decrease in muscle extensibility in the directions of the muscle fibers and transverse to fibers, 2) significant reductions in force-generating capacity, and 3) significant reductions in coupling between longitudinal and transverse properties. Thus these findings suggest that the sarcoglycan complex serves a mechanical function in the diaphragm by contributing to muscle passive stiffness and to the modulation of the contractile properties of the muscle.  相似文献   

7.
Calcium channel blockers bind with high affinity to sites on the voltage-sensitive Ca2+ channel. Radioligand binding studies with various Ca2+ channel blockers have facilitated identification and characterization of binding sites on the channel structure. In the present study we evaluated the relationship between the binding sites for the Ca2+ channel blockers on the voltage-sensitive Ca2+ channel from rabbit heart sarcolemma and rabbit skeletal muscle transverse tubules. [3H]PN200-110 binds with high affinity to a single population of sites on the voltage-sensitive Ca2+ channel in both rabbit heart sarcolemma and skeletal muscle transverse tubules. [3H]PN200-110 binding was not affected by added Ca2+ whereas EGTA and EDTA noncompetitively inhibited binding in both types of membrane preparations. EDTA was a more potent inhibitor of [3H]PN200-110 binding than EGTA. Diltiazem stimulates the binding of [3H]PN200-110 in a temperature-sensitive manner. Verapamil inhibited binding of [3H]PN200-110 to both types of membrane preparations in a negative manner, although this effect was of a complex nature in skeletal muscle transverse tubules. The negative effect of verapamil on [3H]PN200-110 binding in cardiac muscle was completely reversed by Ca2+. On the other hand, Ca2+ was without effect on the negative cooperativity seen between verapamil and [3H]PN200-110 binding in skeletal muscle transverse tubules. Since Ca2+ did not affect [3H]PN200-110 binding to membranes, we would like to suggest that Ca2+ is modulating the negative effect of verapamil on [3H]PN200-110 binding through a distinct Ca2+ binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Geometrical aspects of surface morphogenesis   总被引:2,自引:0,他引:2  
This paper is concerned with the morphogenesis of structures which form thin deformable sheets. A general formalism is presented for the deformation of a sheet in the presence of an isotropic local body stress. This formalism leads to a set of equations, based on the theory of shells, in which corrections are made in the geometry due to large deformations. Under certain conditions the equations may be solved to give the surface metric tensor as a function of the local tension. A numerical example based on a simple "threshold" model is also presented.  相似文献   

9.
The presence of four cation pathways in membrane vesicles isolated from transverse tubules of frog and rabbit skeletal muscle was studied by measuring binding of specific blockers. Transverse tubules purified from frog muscle have a maximal binding capacity for [3H]nitrendipine (a marker for voltage-dependent calcium channels) of 130 pmol/mg of protein; this binding is strongly dependent on temperature and, at 37 degrees C, on the presence of diltiazem. Receptors for [3H]ethylenediamine tetrodotoxin (a marker for voltage-dependent sodium channels) and for 125I-labeled alpha-bungarotoxin (a marker for acetylcholine-mediated channels) showed maximal binding values of about 5 pmol/mg. The number of sodium-pumping sites in the isolated tubule vesicles, inferred from [3H]ouabain binding, was 215 pmol/mg. The high purity of this preparation makes feasible the use of these values as a criterion to judge the degree of purity of isolated preparations, and it allows investigation of transverse tubule contamination in other muscle membrane fractions.  相似文献   

10.
The purpose of this study was to determine the relationships among muscle sound frequencies, muscle tension, and stiffness. Time-frequency transformations of nonstationary acoustic signals provided measures of resonant frequency during isometric contractions of frog (Rana pipiens) semitendinosus and gastrocnemius muscles. A mathematical expression for muscle transverse resonant frequency, elastic modulus and tension, based on elastic beam theory, was formulated by the Rayleigh method adapted for muscles. For thin muscles, the elastic modulus was found to have negligible influence on transverse muscle resonant frequency. Changes in muscle tension were the major determinants of changes in transverse resonant frequency. Consequently, for thin muscles, the time course of muscle tension, but not elastic modulus, can be monitored acoustically during the early phase of contraction when muscles give rise to sounds. Muscles were found to be anisotropic with a modulus of elasticity, EL, measured via length perturbations near 0.1% muscle length peak-to-peak, that was much larger than the modulus of elasticity, Eb, that resists the lateral bending that causes sound production. The elastic and resonant behavior of a thin muscle is similar to a tensioned fibrous cable with distributed mass.  相似文献   

11.
The skeletal mechanics of Astenas forbesii are examined in order to erect a theoretical framework for the evaluation of starfish skeletal systems. Guided by engineering theory, the skeleton is dissected into its functional parts and an approximation made of the stresses sustained by each. All relevant mathematical operations are demonstrated. It is shown that the whole body acts as a unit sustaining compressive forces across its oral surface and tensile stresses across its aboral surface. Two points of maximum stress are identified: the aboral ridge of the ray close to the disk and the inferior transverse amhulacral muscle (ITAM). Structural stability is conferred upon the former by virtue of its position in the body and upon the latter by the inclusion of strong tensile fibres in parallel with the muscle.  相似文献   

12.
This paper specializes the nonlinear laminated-muscle-shell theory developed in Part I to cylindrical geometry and computes stresses in arteries and the beating left ventricle. The theory accounts for large strain, material nonlinearity, thick-shell effects, torsion, muscle activation, and residual strain. First, comparison with elasticity solutions for pressurized arteries shows that the accuracy of the shell theory increases as transmural stress gradients and the shell thickness decrease. Residual strain reduces the stress gradients, lowering the error in the predicted peak stress in thick-walled arteries (R/t = 2.8) from about 30 to 10 percent. Second, the canine left ventricle is modeled as a thick-walled laminated cylinder with an internal pressure. Each layer is composed of transversely isotropic muscle with a fiber orientation based on anatomical data. Using a single pseudostrain-energy density function (with time-varying coefficients) for passive and active myocardium, the model predicts strain distributions that agree fairly well with published experimental measurements. The results also show that the peak fiber stress occurs subendocardially near the beginning of ejection and that residual strains significantly alter stress gradients within each lamina, but the magnitude of the peak fiber stress changes by less than 20 percent.  相似文献   

13.
Nineteen boys were tested annually from age 11 to 15 years. Recovery O2 (or O2 debt in l and ml X kg-1) and blood lactate ([La], mmol X l-1) were measured following supramaximal treadmill tests (20% grade) designed to stress the anaerobic energy systems maximally. The purpose was to describe the rate of development of anaerobic capacity (AnC) from pre-puberty to adolescence. AnC improved from age 11 to 15 years, as indicated by a tripling of recovery O2 (l), 80% increase in recovery O2 per kg and 45% in [La]. Changes were similar from year to year with average yearly increments in recovery O2 of 0.8 l or 9 ml X kg-1 and in [La] of 0.9 mmol X l-1. Individual data also were plotted in relation to age of peak height velocity (PHV, 12.9 +/- 1.2 years). Changes in the measures of AnC were not significantly different when related to biological rather than chronological age. Development of AnC did not show a growth function curve and was not closely correlated with size, nor was the development of AnC enhanced immediately following maturation. Thus, in this longitudinal study, recovery O2 and [La] as measures of AnC showed large increases from age 11 to 15 years, but the gains were similar year to year rather than related to size growth, per se, or hormonal influences at maturation postulated to induce qualitative changes in glycolytic potential of muscle.  相似文献   

14.
Previously we tested the validity of the one-dimensional diffusion equation for O2 in the excised frog sartorius muscle and used it to measure the diffusion coefficient (D) for O2 in this muscle and the time course of its rate of O2 consumption (Qo2) after a tetanus (Mahler, 1978, 1979, J. Gen. Physiol., 71:533-557, 559-580, 73:159-174). A transverse section of the frog sartorius is in fact well fit by a hemi-ellipse with width divided by maximum thickness averaging 5.1 +/- 0.2. Using the previous techniques with the two-dimensional diffusion equation and this hemi-elliptical boundary yields a value for D that is 30% smaller than reported previously; the revised values at 0, 10, and 22.8 degrees C are 6.2, 7.9, and 10.8 X 10(-6) cm2/s, respectively. After a tetanus at 20 degrees C, Qo2 rose quickly to a peak and then declined exponentially, with a time constant (tau) approximately 15% faster than that reported previously; tau averaged 2.1 min in Rana temporaria and 2.6 min in Rana pipiens. A technique was devised to measure the solubility (alpha) of O2 in intact, respiring muscles, and yielded alpha (muscle)/alpha (H2O) = 1.26 +/- 0.04. With these modifications, the values for O2 consumption obtained with the diffusion method were in agreement with those measured by the direct method of Kushmerick and Paul (1976, J. Physiol. [Lond.]., 254:693-709). Using results from both methods, at 20 degrees C the ratio of phosphorylcreatine split during a tetanus to O2 consumption during recovery ranged from 5.2 to 6.2 mumol/mumol, and postcontractile ATP hydrolysis was estimated to be 13.6 +/- 4.1 (n = 3) nmol/mumol total creatine.  相似文献   

15.
Understanding the behavior of skeletal muscle is critical to implementing computational methods to study how the body responds to compressive loading. This work presents a novel approach to studying the fully nonlinear response of skeletal muscle in compression. Porcine muscle was compressed in both the longitudinal and transverse directions under five stress relaxation steps. Each step consisted of 5% engineering strain over 1 s followed by a relaxation period until equilibrium was reached at an observed change of 1 g/min. The resulting data were analyzed to identify the peak and equilibrium stresses as well as relaxation time for all samples. Additionally, a fully nonlinear strain energy density–based Prony series constitutive model was implemented and validated with independent constant rate compressive data. A nonlinear least squares optimization approach utilizing the Levenberg–Marquardt algorithm was implemented to fit model behavior to experimental data. The results suggested the time-dependent material response plays a key role in the anisotropy of skeletal muscle as increasing strain showed differences in peak stress and relaxation time (p < 0.05), but changes in equilibrium stress disappeared (p > 0.05). The optimizing procedure produced a single set of hyper-viscoelastic parameters which characterized compressive muscle behavior under stress relaxation conditions. The utilized constitutive model was the first orthotropic, fully nonlinear hyper-viscoelastic model of skeletal muscle in compression while maintaining agreement with constitutive physical boundaries. The model provided an excellent fit to experimental data and agreed well with the independent validation in the transverse direction.  相似文献   

16.
Despite multiple procedures used to isolate transverse tubule vesicles from rabbit skeletal muscle, few proteins have been identified and shown to be specific to transverse tubule vesicles. Markers for purified transverse tubules have included high affinity dihydropyridine binding, cholesterol content, Mg2+-ATPase activity, (Na+,K+)-ATPase activity, and [3H] ouabain binding. Despite these markers, few proteins from purified transverse tubules can be unequivocally identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In this report we have biochemically and immunologically identified rabbit albumin as a major component of purified transverse tubule membranes from rabbit skeletal muscle. Albumin composed between 5.1 and 9.8% (n = 4) of the total protein in purified transverse tubules based on scans of SDS-PAGE. Furthermore, albumin and other serum proteins are present in preparations of transverse tubules and triads but not in light sarcoplasmic reticulum. Extraction of triads with low concentrations of saponin or sodium dodecyl sulfate completely removes albumin without removing intrinsic membrane proteins. Our results suggest that albumin and other serum proteins are present in the lumen of preparations of transverse tubules and albumin may be used as a marker for the transverse tubules when analyzed on SDS gels.  相似文献   

17.
The morphology of the musculature and connective tissues of the arms of Octopus bimaculoides was analyzed with light microscopy. We also studied O. briareus and O. digueti, which possess relatively more elongate and less elongate arms, respectively. The morphology of the arms was found to be remarkably uniform among species. The arms consist of a densely packed three-dimensional arrangement of muscle fibers and connective tissue fibers surrounding a central axial nerve cord. Three primary muscle fiber orientations were observed: 1) transverse muscle fibers oriented in planes perpendicular to the long axis of the arm; 2) longitudinal muscle fibers oriented parallel to the long axis; and 3) oblique muscle fibers arranged in helixes around the arm. The proportion of the arm cross section occupied by each of these muscle fiber groups (relative to the total cross sectional area of the musculature) remains constant along the length of the arm, even though the arm tapers from base to tip. A thin circular muscle layer wraps the arm musculature on the aboral side only. Much of this musculature has its origin and insertion on several robust connective tissue sheets including a layer surrounding the axial nerve cord and crossed-fiber connective tissue sheets located on the oral and the aboral sides of the arm. An additional thin layer of connective tissue wraps the arm musculature laterally and also serves as a site of origin and insertion of some of the muscle fibers. The fibers of the oral and aboral crossed-fiber connective tissue sheets are arranged oblique to the long axis of the arm with the same fiber angle as the oblique muscle layers that originate and insert on the sheets. The oblique muscle layers and the crossed-fiber connective tissue sheets thus form composite right- and left-handed helical fiber arrays. Analysis of arm morphology from the standpoint of biomechanics suggests that the transverse musculature is responsible for elongation of the arms, the longitudinal musculature is responsible for shortening, and the oblique muscle layers and associated connective tissues create torsion. Arm bending may involve unilateral contraction of longitudinal muscle bundles in combination with resistance to arm diameter increase due to contraction of the transverse musculature or passive stiffness of the arm tissues. The arms may also be bent by a combination of decrease in diameter due to contraction of the transverse musculature and maintenance of constant length on one side of the arm by unilateral activity of longitudinal muscle bundles. An increase in flexural stiffness of the arm may be achieved by cocontraction of the transverse and longitudinal muscle. Torsional stiffness may be increased by simultaneous contraction of both the right- and left-handed oblique muscle layers.  相似文献   

18.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

19.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

20.
The membrane systems of the cardiac muscle cell of Munida tenuimana G. O. Sars are described. The sarcolemma invaginates at the Z level, forming tubules. Narrow tubules branch off in a longitudinal direction from these transverse and radially arranged tubules, forming a narrow transverse collar at the H level where dyadic and triadic junctions are formed with the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号