首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A better understanding of the mechanisms linked to chemokine pronociceptive effects is essential for the development of new strategies to better prevent and treat chronic pain. Among chemokines, MCP-1/CCL2 involvement in neuropathic pain processing is now established. However, the mechanisms by which MCP-1/CCL2 exerts its pronociceptive effects are still poorly understood. In the present study, we demonstrate that MCP-1/CCL2 can alter pain neurotransmission in healthy rats. Using immunohistochemical studies, we first show that CCL2 is constitutively expressed by primary afferent neurons and their processes in the dorsal horn of the spinal cord. We also observe that CCL2 is co-localized with pain-related peptides (SP and CGRP) and capsaicin receptor (VR1). Accordingly, using in vitro superfusion system of lumbar dorsal root ganglion and spinal cord explants of healthy rats, we show that potassium or capsaicin evoke calcium-dependent release of CCL2. In vivo, we demonstrate that intrathecal administration of CCL2 to healthy rats produces both thermal hyperalgesia and sustained mechanical allodynia (up to four consecutive days). These pronociceptive effects of CCL2 are completely prevented by the selective CCR2 antagonist (INCB3344), indicating that CCL2-induced pain facilitation is elicited via direct spinal activation of CCR2 receptor. Therefore, preventing the activation of CCR2 might provide a fruitful strategy for treating pain.  相似文献   

2.
Glutamate (Glu) is the primary excitatory neurotransmitter in the central nervous system and plays a critical role in the neuroplasticity of nociceptive networks. We aimed to examine the role of spinal astroglia in the modulation of glutamatergic neurotransmission in a model of chronic psychological stress-induced visceral hyperalgesia in male Wistar rats. We assessed the effect of chronic stress on different glial Glu control mechanisms in the spinal cord including N-methyl-d-aspartate receptors (NMDARs), glial Glu transporters (GLT1 and GLAST), the Glu conversion enzyme glutamine synthetase (GS), and glial fibrillary acidic protein (GFAP). We also tested the effect of pharmacological inhibition of NMDAR activation, of extracellular Glu reuptake, and of astrocyte function on visceral nociceptive response in naive and stressed rats. We observed stress-induced decreased expression of spinal GLT1, GFAP, and GS, whereas GLAST expression was upregulated. Although visceral hyperalgesia was blocked by pharmacological inhibition of spinal NMDARs, we observed no stress effects on NMDAR subunit expression or phosphorylation. The glial modulating agent propentofylline blocked stress-induced visceral hyperalgesia, and blockade of GLT1 function in control rats resulted in enhanced visceral nociceptive response. These findings provide evidence for stress-induced modulation of glia-controlled spinal Glu-ergic neurotransmission and its involvement in chronic stress-induced visceral hyperalgesia. The findings reported in this study demonstrate a unique pattern of stress-induced changes in spinal Glu signaling and metabolism associated with enhanced responses to visceral distension.  相似文献   

3.
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.  相似文献   

4.
We analyzed the distribution of intermediate filament molecular markers, glial fibrillary acidic protein (GFAP), and vimentin in the brain and spinal cord of the adult brown anole lizard, Anolis sagrei. The GFAP immunoreactivity is strong and the positive structures are basically represented by fibers of different lengths and thicknesses which are arranged in a regular radial pattern throughout the central nervous system. In the brain regions that have a thicker neural wall, the radial orientation is not so evident as in the thinner areas. These fibers emerge from radial ependymoglia (tanycytes) whose cell bodies are generally GFAP-immunopositive. The glial fibers give rise to endfeet that are apposed to the subpial surface and to blood vessel walls. In the spinal cord, the optic tectum and the lateroventral regions of the mesencephalon and medulla oblongata, star-shaped astrocytes coexist with radial structures. Vimentin-immunoreactive structures are absent in the brain and spinal cord. In A. sagrei the immunohistochemical response of the astroglial intermediate filaments appears typical of a mature astroglial cell lineage, since they fundamentally express GFAP immunoreactivity. A Western-blot analysis reveals a GFAP-positive single band, common to the different nervous areas. This immunohistochemical study shows that the star-shaped astrocytes have a different distribution in saurians and while the glial pattern of A. sagrei is more evolved than in urodeles it remains immature as compared with crocodilians, avians, and mammals. This condition suggests that reptiles represent a fundamental step in the phylogenetic evolution of the vertebrate glial cells.  相似文献   

5.
The activation of spinal cord glial cells has been implicated in the development of neuropathic pain upon peripheral nerve injury. The molecular mechanisms underlying glial cell activation, however, have not been clearly elucidated. In this study, we found that damaged sensory neurons induce the expression of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and inducible nitric-oxide synthase genes in spinal cord glial cells, which is implicated in the development of neuropathic pain. Studies using primary glial cells isolated from toll-like receptor 2 knock-out mice indicate that damaged sensory neurons activate glial cells via toll-like receptor 2. In addition, behavioral studies using toll-like receptor 2 knock-out mice demonstrate that the expression of toll-like receptor 2 is required for the induction of mechanical allodynia and thermal hyperalgesia due to spinal nerve axotomy. The nerve injury-induced spinal cord microglia and astrocyte activation is reduced in the toll-like receptor 2 knock-out mice. Similarly, the nerve injury-induced pro-inflammatory gene expression in the spinal cord is also reduced in the toll-like receptor 2 knock-out mice. These data demonstrate that toll-like receptor 2 contributes to the nerve injury-induced spinal cord glial cell activation and subsequent pain hypersensitivity.  相似文献   

6.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

7.
Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1−/−) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1−/− mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1−/− mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1−/− mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1−/− mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1−/− mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1/CCR2 signaling-dependent inflammatory responses.  相似文献   

8.
The antinociceptive effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were investigated on animal paw licking responses and thermal hyperalgesia induced by glutamate receptor agonists including glutamate, N-methyl-D-aspartate (NMDA), and metabotropic glutamate 5 receptor (mGluR5) activator (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as inflammatory mediators such as substance P and prostaglandin E2 (PGE2) in mice. The actions of honokiol and magnolol on glutamate-induced c-Fos expression in the spinal cord dorsal horn were also examined. Our data showed that honokiol and magnolol blocked glutamate-, substance P- and PGE2-induced inflammatory pain with similar potency and efficacy. Consistently, honokiol and magnolol significantly decreased glutamate-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol was more selective than magnolol for inhibition of NMDA-induced licking behavioral and thermal hyperalgesia. In contrast, magnolol was more potent to block CHPG-mediated thermal hyperalgesia. These results demonstrate that honokiol and magnolol effectively decreased the inflammatory pain. Furthermore, their different potency on inhibition of nociception provoked by NMDA receptor and mGluR5 activation should be considered.  相似文献   

9.
Following genital herpes simplex virus type 2 (HSV-2) exposure, NK cells and T cells are mobilized to sites of infection to control viral replication and spread. The present investigation sought to determine the role of the chemokine receptor CCR5 in this process. Mice deficient in CCR5 (CCR5-/-) displayed a significant reduction in cumulative survival following infection in comparison to wild-type, HSV-2-infected controls. Associated with decreased resistance to viral infection, CCR5-/- mice yielded significantly more virus and expressed higher levels of tumor necrosis factor alpha, CXCL1, CCL2, CCL3, and CCL5 in the vagina, spinal cord, and/or brain stem than did wild-type mice. Whereas there was no difference in absolute number of leukocytes (CD45high), CD4 T cells, or CD8 T cells residing in the draining lymph nodes, spleen, spinal cord, or brain stem comparing HSV-2-infected wild-type to CCR5-/- mice prior to or after infection, there were significantly more NK cells (NK1.1+ CD3-) residing in the brain stem and spleen of infected wild-type mice. Functionally, NK activity from cells isolated from the brain stem of HSV-2-infected wild-type mice was greater than that from HSV-2-infected CCR5-/- mice. In addition, antibody-mediated depletion of NK cells resulted in an increase in HSV-2 levels in the vaginal, spinal cord, and brain stem tissue of wild-type but not CCR5-/- mice. Collectively, the absence of CCR5 expression significantly impacts the ability of the host to control genital HSV-2 infection, inflammation, and spread associated with a specific reduction in NK cell expansion, infiltration, and activity in the nervous system.  相似文献   

10.
Mice homozygous for the spontaneous motor neuron degeneration mutation (mnd) show at the age of 8 months a marked impairment of the motor function and accumulation of lipofuscin granules in the cytoplasm of almost all neurons of the central nervous system.We previously reported a significant increase in GFAP protein levels in the lumbar spinal cord homogenates by western blot analysis and upregulation of TNF, a proinflammatory cytokine, in the motor neurons of lumbar spinal cord of mnd mice, already in a presymptomatic stage (4 months of age). In the present study, using immunohistochemical analysis, we performed a time course in mnd mice (1, 4 and 9 months of age) evaluating the expression and the distribution of astroglial and microglial cells and the expression of both TNF receptors, TNFR-I and TNFR-II. We observed a marked increase in astroglial and microglial cells and in TNFR-I immunoreactivity already at the 4th month. Since motor neuron dysfunction occurs in mnd mice in the absence of evident loss of spinal motor neurons, the present results indicate that the activation of microglial cells and astrocytes is independent from neuronal degeneration. The role of TNF and TNFR-I on motor neurons is still to be demonstrated.  相似文献   

11.
ABSTRACT: BACKGROUND: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.  相似文献   

12.
13.
Cao JL  Zeng YM  Zhang LC  Duan SM 《生理学报》2000,52(3):235-238
运用Fos免疫组织化学、NADPH-d组织化学及Fos/NADPH-d双标技术,研究了吗啡耐受对福尔马林致痛大鼠脊髓Fos、NADPH-d阳性及Fos/NADPH-d双标神经元表达的影响。结果观察到:在非吗啡耐受大鼠,福尔马林诱发的Fos-like immunoreactivity(Fos-LI)主要分布在同侧脊髓背角浅层和颈部,急性静注吗啡可减少Fos-LI表达;长时间应用吗啡导致福尔马林诱发的  相似文献   

14.
The role of the hyaluronate receptor, CD44, is well known in adult mammal astrocytes where it modulates neuron-glia interactions. However, no data exist regarding its expression in other vertebrates during their development. In order to detect the expression of CD44 in the chicken and its possible involvement in glial precursor migratory patterns during spinal cord development, a monoclonal antibody (MoAb) against the mammalian standard isoform, CD44-H, was used in immunohistochemical and immunoblot assays. With these methods, CD44 hyaluronate receptors were found on mature astrocyte membranes of adult chicken spinal cord. Astrocytes were identified using a MoAb against GFAP. During development, small clusters of CD44 labelled cells were seen lining the central canal starting from embryonic stage E10. These labelled cells were dispersed in the dorsal, lateral and ventral funiculi of the spinal cord in the subsequent stages. After stage E15, the CD44 labelled cells were identified as astrocytes because of their GFAP immunoreactivity. We conclude that CD44 receptors on immature astrocyte precursors should be considered as early astrocyte markers which have a possible role during cell migratory dispersal.  相似文献   

15.
Chemokines and their receptors have been studied in several solid tumor models as mediators of inflammation. In turn, inflammation has been implicated in the promotion and progression of tumors, and as such, chemokines have been proposed as novel molecular targets for chemotherapy. While the expression of these molecules has been described in tumor cells, endothelial cells, macrophages and neutrophils, less attention has been paid to the expression profile of these molecules by T lymphocytes in the periphery or infiltrating the tumor. Using the D1-DMBA-3 murine mammary adenocarcinoma model, we aimed to better characterize the differential expression of chemokines and/or their receptors in the host and in the tumor microenvironment, and specifically, in the T cells of tumor-bearing mice compared to normal control animals. We found that T lymphocytes from tumor-bearing mice express the pro-inflammatory chemokines, CCL2, CCL5 and CXCL2, as well as the chemokine receptors, CCR1, CCR2, CCR3 and CXCR2.  相似文献   

16.
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.  相似文献   

17.
18.
In the CNS, immune-like competent cells (microglia and astrocytes) were first described as potential sites of chemokine synthesis, but more recent evidence has indicated that neurones might also express chemokines and their receptors. The aim of the present work was to investigate further, both in vivo and in vitro, CC Chemokine Family Receptor 2 (CCR2) expression and functionality in rat spinal cord neurones. First, we demonstrated by RT-PCR and western blot analysis that CCR2 mRNA and protein were present in spinal extracts. Furthermore, we showed by immunolabelling that CCR2 was exclusively expressed by neurones in spinal sections of healthy rat. Finally, to test the functionality of CCR2, we used primary cultures of rat spinal neurones. In this model, similar to what was observed in vivo, CCR2 mRNA and protein were expressed by neurones. Cultured neurones stimulated with Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2, the best characterized CCR2 agonist, showed activation of the Akt pathway. Finally, patch-clamp recording of cultured spinal neurones was used to investigate whether MCP-1/CCL2 could modulate their electrophysiological properties. MCP-1 alone did not affect the electrical properties of spinal neurones, but potently and efficiently inhibited GABA(A)-mediated GABAergic responses in these neurones. These data constitute the first demonstration of a modulatory role of MCP-1 on GABAergic neurotransmission and contribute to our understanding of the roles of CCR2 and MCP-1/CCL2 in spinal cord physiology, in particular with respect to nociceptive transmission, as well as the implication of this chemokine in neuronal adaptation or dysfunction during neuropathy.  相似文献   

19.
The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号