首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer’s and Parkinson’s diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates.  相似文献   

2.
β cell pseudoislets (PIs) are used for the in vitro study of β-cells in a three-dimensional (3-D) configuration. Current methods of PI induction require unique culture conditions and extensive mechanical manipulations. Here we report a novel co-culture system consisting of high passage β-cells and islet-derived endothelial cells (iECs) that results in a rapid and spontaneous formation of free-floating PIs. PI structures were formed as early as 72 h following co-culture setup and were preserved for more than 14 d. These PIs, composed solely of β-cells, were similar in size to that of native islets and showed an increased percentage of proinsulin-positive cells, increased insulin gene expression in response to glucose stimulation, and restored glucose-stimulated insulin secretion when compared to β-cells cultured as monolayers. Key extracellular matrix proteins that were absent in β-cells cultured alone were deposited by iECs on PIs and were found in and around the PIs. iEC-induced PIs are a readily available tool for examining β cell function in a native 3-D configuration and can be used for examining β-cell/iEC interactions in vitro.  相似文献   

3.
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson’s Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.  相似文献   

4.
Electrical brain stimulation used to treat a variety of neurological and psychiatric diseases is entering a new period. The technique is well established and the potential complications are well known and generally manageable. Recent studies demonstrated that electrical fields (EFs) can enhance neuroplasticity-related processes. EFs applied in the physiological range induce migration of different neural cell types from different species in vitro. There are some evidences that also the speed and directedness of cell migration are enhanced by EFs. However, it is still unclear how electrical signals from the extracellular space are translated into intracellular actions resulting in the so-called electrotaxis phenomenon. Here, we aim to provide a comprehensive review of the data on responses of cells to electrical stimulation and the relation to functional recovery.  相似文献   

5.
International Journal of Peptide Research and Therapeutics - Alzheimer’s disease is the main cause of dementia and the deposition of amyloid beta peptide (Aβ) in the brain is the key...  相似文献   

6.
Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer's disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25-35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25-35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer's disease related amyloids.  相似文献   

7.
Oxidative stress is a great challenge to neurons following cerebral ischemia. PGC-1α has been shown to act as a potent modulator of oxidative metabolism. In this study, the effects of ZLN005, a small molecule that activate PGC-1α, against oxygen–glucose deprivation (OGD)- or ischemia-induced neuronal injury in vitro and in vivo were investigated. Transient middle cerebral artery occlusion (tMCAO) was performed in rats and ZLN005 was administered intravenously at 2 h, 4 h, or 6 h after ischemia onset. Infarct volume and neurological deficit score were detected to evaluate the neuroprotective effects of ZLN005. Well-differentiated PC12 cells, which were subjected to OGD for 2 h followed by reoxygenation for 22 h, were used as an in vitro ischemic model. Changes in expression of PGC-1α, its related genes, and antioxidant genes were determined by real-time quantitative PCR. The results showed that ZLN005 reduced cerebral infarct volume and improved the neurological deficit in rat with tMCAO, and significantly protected OGD-induced neuronal injury in PC12 cells. Furthermore, ZLN005 enhanced expression of PGC-1α in PC12 cells and in the ipsilateral hemisphere of rats with tMCAO. Additionally, ZLN005 increased antioxidant genes, including SOD1 and HO-1, and significantly prevented the ischemia-induced decrease in SOD activity. Taking together, the PGC-1α activator ZLN005 exhibits neuroprotective effects under ischemic conditions and molecular mechanisms possibly involve activation of PGC-1α signaling pathway and cellular antioxidant systems.  相似文献   

8.

Background

Lewy body in the substantia nigra is a cardinal pathological feature of Parkinson''s disease. Despite enormous efforts, the cause-and-effect relationship between Lewy body formation and the disorder is yet to be explicitly unveiled.

Methodology/Principal Findings

Here, we showed that radiating amyloid fibrils (RAFs) were instantly developed on the surface of synthetic lipid membranes from the β-sheet free oligomeric species of α-synuclein through a unit-assembly process. The burgeoning RAFs were successfully matured by feeding them with additional oligomers, which led to concomitant dramatic shrinkage and disintegration of the membranes by pulling off lipid molecules to the extending fibrils. Mitochondria and lysosomes were demonstrated to be disrupted by the oligomeric α-synuclein via membrane-dependent fibril formation.

Conclusion

The physical structure formation of amyloid fibrils, therefore, could be considered as detrimental to the cells by affecting membrane integrity of the intracellular organelles, which might be a molecular cause for the neuronal degeneration observed in Parkinson''s disease.  相似文献   

9.
l-Ala modified analogues of amyloid β-peptide residue 17-20 LVFF (-l-Leu-l-Val-l-Phe-l-Phe-) have been designed and synthesized to study their self-assembling propensity, the nature of intermolecular interactions and rationalize with short hydrophobic sequences in the middle of Aβ that have important role in the neuropathology of Alzheimer’s disease. The peptides sequences LVFA and LAFA have been adopted from the β-sheet region of non-amyloidogenic proteins (hemoglobin-like falvoprotein and ATP synthase C chain, respectively). All the reported peptides self-associate into amyloid-like fibrils which are readily stained with a physiological dye Congo red and exhibits green gold birefringence under polarized light. The solid state FTIR studies of the fibrils reveal that the reported peptides self-associate through intermolecular hydrogen bonds to form antiparallel β-sheet structure, which is also supported by molecular modeling studies. This result suggests that l-Ala analogous of Aβ17-20, LVFA and LAFA also have virtually identical aggregation behavior.  相似文献   

10.
Cold atmospheric plasma (CAP) has been gaining increasing interest as a new approach for the treatment of skin diseases or wounds. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. This study explored in vitro and in vivo whether CAP influences gene expression and molecular mechanisms in keratinocytes. Our results revealed that a 2 min CAP treatment using the MicroPlaSter ß in analogy to the performed clinical studies for wound treatment induces expression of IL-8, TGF-ß1, and TGF-ß2. In vitro and in vivo assays indicated that keratinocyte proliferation, migration, and apoptotic mechanisms were not affected by the CAP treatment under the applied conditions. Further, we observed that antimicrobial peptides of the ß-defensin family are upregulated after CAP treatment. In summary, our results suggest that a 2 min application of CAP induces gene expression of key regulators important for inflammation and wound healing without causing proliferation, migration or cell death in keratinocytes. The induction of ß-defensins in keratinocytes describes an absolutely new plasma strategy. Activation of antimicrobial peptides supports the well-known antibacterial effect of CAP treatment, whereas the mechanism of ß-defensin activation by CAP is not investigated so far.  相似文献   

11.
In Alzheimer’s disease (AD), the amyloid β (Aβ) peptide aggregates in the brain to form progressively larger oligomers, fibrils, and plaques. The aggregation process is strongly influenced by the presence of other macromolecular species, called crowders, that can exert forces on the proteins. One very common attribute of macromolecular crowders is their hydrophobicity. We examined the effect of hydrophobic crowders on protein aggregation by using discontinuous molecular dynamics (DMD) simulations in combination with an intermediate resolution protein model, PRIME20. The systems considered contained 48 Aβ (16–22) peptides and crowders with diameters of 5 Å, 20 Å, and 40 Å, represented by hard spheres or spheres with square-well/square-shoulder interactions, at a crowder volume fraction of ϕ = 0.10. Results show that low levels of crowder hydrophobicity are capable of increasing the fibrillation lag time and high levels of crowder hydrophobicity can fully prevent the formation of fibrils. The types of structures that remain during the final stages of the simulations are summarized in a global phase diagram that shows fibril, disordered oligomer, or β-sheet phases in the space spanned by crowder size and crowder hydrophobicity. In particular, at high levels of hydrophobicity, simulations with 5 Å crowders result in only disordered oligomers and simulations with 40 Å crowders result in only β-sheets. The presence of hydrophobic crowders reduces the antiparallel β-sheet content of fibrils, whereas hard sphere crowders increase it. Finally, strong hydrophobic crowders alter the secondary structure of the Aβ (16–22) monomers, bending them into a shape that is incapable of forming ordered β-sheets or fibrils. These results qualitatively agree with previous theoretical and experimental work.  相似文献   

12.
Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer''s disease patients.  相似文献   

13.
The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys3–Cys14) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.  相似文献   

14.
Fibril formation of β2-microglobulin and associated inflammation occur in patients on long term dialysis. We show that the plasma protein haptoglobin prevents the fatty acid-promoted de novo fibril formation of β2-microglobulin even at substoichiometric concentration. The fibrils are cytotoxic, and haptoglobin abolishes the cytotoxicity by preventing fibril formation. Haptoglobin does not alleviate the cytotoxicity of preformed fibrils. Fibrillar β2-microglobulin is resistant to lysosomal degradation. However, the species of β2-microglobulin populated in the presence of haptoglobin is susceptible to degradation. We observed that haptoglobin interacts with oligomeric prefibrillar species of β2-microglobulin but not with monomeric or fibrillar β2-microglobulin that may underlie the molecular mechanism. 1,1′-Bis(4-anilino)naphthalene-5,5′-disulfonic acid cross-linking to haptoglobin significantly compromises its chaperone activity, suggesting the involvement of hydrophobic surfaces. Haptoglobin is an acute phase protein whose level increases severalfold during inflammation, where local acidosis can occur. Our data show that haptoglobin prevents fibril formation of β2-microglobulin under conditions of physiological acidosis (between pH 5.5 and 6.5) but with relatively decreased efficiency. However, compromise in its chaperone activity under these conditions is more than compensated by its increased level of expression under inflammation. Erythrolysis is known to release hemoglobin into the plasma. Haptoglobin forms a 1:1 (mol/mol) complex with hemoglobin. This complex, like haptoglobin, interacts with the prefibrillar species of β2-microglobulin, preventing its fibril formation and the associated cytotoxicity and resistance to intracellular degradation. Thus, our study demonstrates that haptoglobin is a potential extracellular chaperone for β2-microglobulin even in moderately acidic conditions relevant during inflammation, with promising therapeutic implications in β2-microglobulin amyloid-related diseases.  相似文献   

15.
Background and purpose Cerebral ischemia is known to elicit the activation of neural stem cells (NSCs); however its mechanism is not fully determined. Although oxygen concentration is known to mediate many ischemic actions, there has been little attention given to the role of pathological oxygen changes under cerebral ischemia on the activation of NSCs. We investigated the effects of various oxygen concentrations on mouse neural stem cells in vitro. Methods NSCs were cultured from the ganglionic eminence of fetal ICR mice on embryonic day 15.5 using a neurosphere method. The effects of oxygen concentrations on proliferation, differentiation, and cell death of NSCs were evaluated by bromodeoxyuridine (BrdU) incorporation, immunocytochemistry, and TUNEL assay, respectively. Results The highest proliferation and the neuronal differentiation of the NSCs were observed in 2% oxygen, which yielded significantly higher proportions of both BrdU-labeled cells and Tuj1-positive cells when compared with 20% and 4% oxygen. On the other hand, the differentiation to the astrocytes was not affected by oxygen concentrations, except in the case of anoxia (0% oxygen). The cell death of the NSCs increased in lower oxygen conditions and peaked at anoxia. Furthermore, the switching of the neuronal subtype differentiation from GABA-positive to glutamate-positive neurons was observed in lower oxygen conditions. Conclusions These findings raise the possibility that reduced oxygen levels occurring with cerebral ischemia enhance NSC proliferation and neural differentiation, and that mild hypoxia (2% oxygen), which is known to occur in the ischemic penumbra, is suitable for abundant neuronal differentiation.  相似文献   

16.
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of “spontaneous” blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca2+ was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca2+-dependent Cl currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (Tout) and the serum-activated, oscillatory Cl currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca2+-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.  相似文献   

17.
The cluster of neurodegenerative disorders in the western Pacific termed amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) has been repeatedly linked to the use of seeds of various species of cycad. Identification and chemical synthesis of the most toxic compounds in the washed cycad seeds, a variant phytosteryl glucosides, and even more toxic cholesterol β-D-glucoside (CG), which is produced by the human parasite Helicobacter pylori, provide a possibility to study in vitro the mechanisms of toxicity of these compounds. We studied in detail the effects of CG on the respiratory activities and generation of reactive oxygen species (ROS) by nonsynaptic brain and heart mitochondria oxidizing various substrates. The stimulatory effects of CG on respiration and ROS generation showed strong substrate dependence, suggesting involvement of succinate dehydrogenase (complex II). Maximal effects on ROS production were observed with 1 μmol CG/1 mg mitochondria. At this concentration the cycad toxins β-sitosterol-β-D-glucoside and stigmasterol-β-D-glucoside had effects on respiration and ROS production similar to CG. However, poor solubility precluded full concentration analysis of these toxins. Cholesterol, stigmasterol and β-sitosterol had no effect on mitochondrial functions studied at concentrations up to 100 μmol/mg protein. Our results suggest that CG may influence mitochondrial functions through changes in the packing of the bulk membrane lipids, as was shown earlier by Deliconstantinos et al. (Biochem Cell Biol 67:16-24, 1989). The neurotoxic effects of phytosteryl glucosides and CG may be associated with increased oxidative damage of neurons. Unlike heart mitochondria, in activated neurons mitochondria specifically increase ROS production associated with succinate oxidation (Panov et al., J Biol Chem 284:14448-14456, 2009).  相似文献   

18.
A Kalyva  A Schmidtmann  MA Geeves 《Biochemistry》2012,51(32):6388-6399
Tropomyosin (Tm) is a dimer made of two alpha helical chains associated into a parallel coiled-coil. In mammalian skeletal and cardiac muscle, the Tm is expressed from two separate genes to give the α- and β-Tm isoforms. These associate in vivo to form homo- (α(2)) and heterodimers (α·β) with little β(2) normally observed. The proportion of α(2) vs α·β varies across species and across muscle types from almost 100% α(2)- to 50% α·β-Tm. The ratio can also vary during development and in disease. The functional significance of the presence of these two isoforms has not been defined because it is difficult to isolate or purify the α·β dimer for functional studies. Here we report an effective method for purifying bacterially expressed Tm as α·β dimers using a cleavable N-terminal tag on one of the two chains. The same method can be used to isolate Tm dimers in which one chain carries a mutation. We go on to show that the α·β dimers differ in key properties (actin affinity, thermal stability) from either the α(2)- or β(2)-Tm. However, the ability to regulate myosin binding when combined with cardiac troponin appears unaffected.  相似文献   

19.
Guanidinoacetate methyltransferase (GAMT) deficiency is a disorder of creatine metabolism characterized by low plasma creatine concentrations in combination with elevated guanidinoacetate (GAA) concentrations. The aim of this work was to investigate the in vitro effect of guanidinoacetate in NTPDase, 5′-nucleotidase and acetylcholinesterase activities in the synaptosomes, platelets and blood of rats. The results showed that in synaptosomes the NTPDase and 5′-nucleotidase activities were inhibited significantly in the presence of GAA at concentrations of 50, 100, 150 and 200 μM (P < 0.05). However, in platelets GAA at the same concentrations caused a significant increase in the activities of these two enzymes (P < 0.05). In relation to the acetylcholinesterase activity, GAA caused a significant inhibition in the activity of this enzyme in blood at concentrations of 150 and 200 μM (P < 0.05), but did not alter the acetylcholinesterase activity in synaptosomes from the cerebral cortex. Our results suggest that alterations caused by GAA in the activities of these enzymes may contribute to the understanding of the neurological dysfunction of GAMT-deficient patients.  相似文献   

20.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号