首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preoptic/anterior hypothalamic area (POA/AH) is one of the most sexually dimorphic areas of the vertebrate brain and plays a pivotal role in regulating male sexual behavior. Vinclozolin is a fungicide thought to be an environmental antiandrogen, which disrupts masculine sexual behavior when administered to rabbits during development. In this study, we examined several characteristics of the rabbit POA/AH for sexual dimorphism and endocrine disruption by vinclozolin. Pregnant rabbits were dosed orally with vinclozolin (10 mg/kg body weight) or carrot paste vehicle once daily for 6 wk beginning at midgestation and continuing through nursing until Postpartum Week 4. At 6 wk, offspring were perfused with 4% paraformaldehyde and brains processed for immunocytochemical localization of tyrosine hydroxylase, calbindin, gonadotropin-releasing hormone (GnRH), or Nissl stain. There were significant sex differences in the distribution of calbindin in the POA/AH and the size of cells in the dorsal POA/AH (values greater in females than in males), but not in the number or distribution of tyrosine hydroxylase or GnRH neurons. In both sexes, exposure to vinclozolin significantly increased calbindin expression in the ventral POA/AH and significantly decreased number of GnRH neurons selectively in the region of the organum vasculosum of the lamina terminalis (OVLT) but not more caudally in the POA/AH. This is the first documentation of a sexually dimorphic region in the rabbit brain, and further supports the use of this species as a model for studying the influence of vinclozolin on reproductive development with potential application to human systems.  相似文献   

2.
Preovulatory GnRH and LH surges depend on activation of estrogen (E2)-inducible progesterone receptors (PGRs) in the preoptic area (POA). Surges do not occur in males, or in perinatally androgenized females. We sought to determine whether prenatal androgen exposure suppresses basal or E2-induced Pgr mRNA expression or E2-induced LH surges (or both) in adulthood, and whether any such effects may be mediated by androgen receptor activation. We also assessed whether prenatal androgens alter subsequent GnRH pulsatility. Pregnant rats received testosterone or vehicle daily on Embryonic Days 16-19. POA-hypothalamic tissues were obtained in adulthood for PgrA and PgrB (PgrA+B) mRNA analysis. Females that had prenatal exposure to testosterone (pT) displayed reduced PgrA+B mRNA levels (P < 0.01) compared with those that had prenatal exposure to vehicle (pV). Additional pregnant animals were treated with vehicle or testosterone, or with 5alpha-dihydrotestosterone (DHT). In adult ovariectomized offspring, estradiol benzoate produced a 2-fold increase (P < 0.05) in PgrA+B expression in the POA of pV females, but not in pT females or those that had prenatal exposure to DHT (pDHT). Prenatal testosterone and DHT exposure also prevented estradiol benzoate-induced LH surges observed in pV rats. Blood sampling of ovariectomized rats revealed increased LH pulse frequency in pDHT versus pV females (P < 0.05). Our findings support the hypothesis that prenatal androgen receptor activation can contribute to the permanent defeminization of the GnRH neurosecretory system, rendering it incapable of initiating GnRH surges, while accelerating basal GnRH pulse generator activity in adulthood. We propose that the effects of prenatal androgen receptor activation on GnRH neurosecretion are mediated in part via permanent impairment of E2-induced PgrA+B gene expression in the POA.  相似文献   

3.
Hypertension can originate from pre- and post-natal insults. High-fat (HF) diet and prenatal dexamethasone (DEX) exposure are both involved in hypertension of developmental origins. We examined whether postnatal HF diet sex-specifically increases the vulnerability to prenatal DEX exposure-induced programmed hypertension in adult offspring. Additionally, we sought to identify candidate proteins involved in programmed hypertension through a mass spectrometry-based quantitative proteomic approach. Male and female offspring were studied separately: control, DEX, HF, and DEX + HF (n=8/group). Pregnant Sprague–Dawley rats received dexamethasone (0.1 mg/kg body weight) or vesicle from gestational day 16–22. Offspring received high-fat diet (D12331, Research Diets) or regular diet from weaning to 4 months of age. Rats were sacrificed at 4 months of age. We found that postnatal HF diet increased vulnerability of prenatal DEX-induced hypertension in male but not in female adult offspring. Additionally, HF and DEX elicited renal programming in a sex-specific fashion. In males, DEX + HF increased renal parvalbumin (PVALB) and carbonic anhydrase III (CA III) protein levels. While prenatal DEX down-regulated PVALB and CA III protein abundance in female offspring kidneys. Moreover, DEX + HF increased renal protein level of type 3 sodium hydrogen exchanger (NHE3) in males but not in females. In conclusion, postnatal HF diet and prenatal DEX exposure synergistically induced programmed hypertension in male-only offspring. DEX + HF induced sex-specific alterations of protein profiles in offspring kidneys. By identifying candidate proteins underlying sex-specific mechanisms, our results could lead to novel offspring sex-specific interventions to prevent hypertension induced by antenatal corticosteroids and postnatal HF intake in both sexes.  相似文献   

4.
In the African cichlid fish, Haplochromis burtoni, males are either territorial or nonterritorial. Territorial males suppress reproductive function in the nonterritorial males, and have larger gonads and larger gonadotropin-releasing hormone- (GnRH) containing neurons in the preoptic area (POA). We describe an experiment designed to establish the causal relationship between large GnRH neurons and large testes in these males by determining the feedback effects of gonadal sex steroids on the GnRH neurons. Territorial males were either castrated or sham-operated, 4 weeks after which they were sacrificed. Circulating steroid levels were measured, and the GnRH-containing neurons were visualized by staining sagittal sections of the brains with an antibody to salmon GnRH. The soma areas of antibody-stained neurons were measured with a computer-aided imaging system. Completely castrated males had markedly reduced levels of circulating sex steroids [11-ketotestosterone (11KT) and testosterone (T)], as well as 17 beta-estradiol (E2). POA GnRH neurons in castrates showed a significant increase in mean soma size relative to the intact territorial males. Hence, in mature animals, gonadal steroids act as a brake on the growth of GnRH-containing neurons, and gonadal products are not responsible for the large GnRH neurons characteristic of territorial males.  相似文献   

5.
The hippocampus is implicated in spatial cognition, which is sexually dimorphic and developmentally sensitive to gonadal steroids. Previously we have shown a sex difference in CA3 pyramidal cell layer volume and neuronal soma size that was reversible with neonatal castration in males or prenatal treatment of females with either testosterone propionate (TP) or a nonaromatizable androgen, dihydrotestosterone propionate, but not estradiol benzoate, all of which correlated with adult water maze navigation. The present study further investigates developmental androgen sensitivity of CA3 pyramidal neurons by measuring dendritic morphology and its relation to adult spatial ability. Female rats were injected with TP on postnatal day (P) 3 and P5 or ovariectomized (OVX) on P2, and male rats were castrated on P2, with or without testosterone replacement (Cas+T). Sham surgery controls were also included. Animals were tested on a water maze in adulthood, sacrificed, and CA3 pyramidal neurons were Golgi-stained and reconstructed in three dimensions using a computer-interfaced morphometry system. High-androgen groups (control males, Cas+T, TP females) performed better in spatial navigation and exhibited CA3 neurons with longer dendrites, a larger number of dendritic branches, and volumes of influence compared to low-androgen groups (control females, castrated males, OVX). Collectively, these findings indicate that the critical time period for organizational effects of androgens on the CA3 pyramidal neurons includes both prenatal and postnatal life, during which time androgens regulate developmental events such as somal growth and neuronal differentiation, all of which significantly contribute to establishing the sex difference in adult spatial navigation.  相似文献   

6.
《Hormones and behavior》2009,55(5):669-675
Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity.  相似文献   

7.
Prenatal stress can affect foetal neurodevelopment and result in increased risk of depression in adulthood. It promotes increased maternal hypothalamo–pituitary–adrenal gland (HPA) secretion of glucocorticoid (GC), leading to increased foetal and maternal GC receptor activity. Prenatal GC receptor activity is also increased during prenatal treatment with dexamethasone (DEX), which is commonly prescribed as a prophylactic treatment of preterm delivery associated morbid symptoms. Here, we exposed pregnant Wistar rats to 0.1 mg/kg/d DEX during the last week of pregnancy and performed cross-fostering at birth. In the adult offspring we then studied the effects of prenatal DEX exposure per se and the effects of rearing by a dam exposed to prenatal DEX. Offspring were assessed in the following paradigms testing biobehavioural processes that are altered in depression: progressive ratio schedule of reinforcement (anhedonia), Porsolt forced swim test (behavioural despair), US pre-exposure active avoidance (learned helplessness), Morris water maze (spatial memory) and HPA axis activity (altered HPA function). Responsiveness to a physical stressor in terms of HPA activity was increased in male offspring exposed prenatally to DEX. Despite this increased HPA axis reactivity, we observed no alteration of the assessed behaviours in offspring exposed prenatally to DEX. We observed impairment in spatial memory in offspring reared by DEX exposed dams, independently of prenatal treatment. This study does not support the hypothesis that prenatal DEX exposure leads to depression-like symptoms in rats, despite the observed sex-specific programming effect on HPA axis. It does however emphasise the importance of rearing environment on adult cognitive performances.  相似文献   

8.
The role of maternal allergen exposure in the allergenicity of the offspring remains controversial. Some studies have shown that maternal exposure is a risk factor for allergy in the offspring, whereas other studies have shown that maternal exposure induces immune tolerance and protects offspring from allergy disease. Therefore, we utilized maternal rat allergen exposure model to evaluate the offspring immune reactions to ovalbumin protein and to determine whether the Brown Norway (BN) rat model is a suitable animal model for studying the allergenicity of food proteins. For three generations, rats received an allergens or non-allergens by gavage during the pregnancy and lactation periods. After weaning, the offspring rats were used for oral sensitization experiment. In the sensitization experiment, the control rat, which had maternal exposure to phosphate-buffered saline (PBS), exhibited full response of IgG to oral exposure to OVA. The IgG level was significantly lower in F1 rats that were sensitized by maternal exposure to ovalbumin(OVA). Moreover, the lowest IgG level was found for the F3b sensitized by maternal rats exposed to OVA allergen for three continuous generations. Compared with maternal OVA exposure prior to postnatal sensitization, the sensitization via maternal PBS led to a higher serum level of OVA-specific IgG. However, the OVA-specific IgG levels for the two generations of maternal PBS exposure prior to postnatal sensitization was not higher than that for the one generation of maternal rats exposed to PBS prior to postnatal sensitization. Our studies demonstrate that maternal OVA exposure during the pregnancy and lactation can affect the results of oral sensitization studies using ovalbumin protein. BN rats must be bred in non-allergen conditions for at least one generation to avoid problems in rat models for studying the allergenicity of food proteins.  相似文献   

9.
The populations of gonadotropin-releasing hormone (GnRH)-producing cells within the preoptic area (POA) and terminal nerve (TN) of the brain have been suggested as the neuronal systems mediating social control of sex and gonadogenesis in sequentially hermaphroditic teleosts. In the present study, the number and soma size of GnRH-immunoreactive (GnRH-ir) cells in the POA and TN were studied in male, female and juvenile individuals of the dusky anemonefish (Amphiprionmelanopus), a species which displays both male to female sex change and socially controlled sexual maturation. The results showed that the number of POA (but not TN) GnRH-ir cells differ significantly between sexual phases, with males displaying higher cell numbers than both females and juveniles. Soma sizes of POA and TN GnRH-ir cells were larger in females than in males and juveniles. However, this relationship was fully explained by differences in body size. The results indicate that high POA GnRH cell numbers are part of a masculinizing mechanism and support the hypothesis that the POA GnRH cell population plays a central role in initiating or mediating the process of socially induced gonadal and/or behavioural transformations in sequential hermaphrodites. Accepted: 9 June 1997  相似文献   

10.
The objectives were to (a) determine the age in development when GnRH is first detectable in the brain and (b) observe the distribution of GnRH throughout the fetal and early postnatal period. GnRH was localized immunohistochemically in fetal (15, 16, 17 and 19 days of gestation) and early postnatal (1- and 7-day-old) mice with the peroxidase-antiperoxidase (PAP) method of Sternberger. In the organum vasculosum of the lamina terminalis (OVLT) and in the median eminence of the fetus, GnRH was first detected at 17 days of gestation. In the OVLT, GnRH was found ventral to the preoptic recess of the third ventricle near the ventral surface of the brain. In addition, GnRH was located adjacent to the superficial portal capillaries near the surface of the median eminence. At 19 days of gestation, the distribution of GnRH was similar to that observed at 17 days and there was a marked increase in amount. In the newborn mouse, GnRH was undetectable in the OVLT and its content in the median eminence was decreased as compared to that observed in the fetus. By the seventh postnatal day, a considerable accumulation of GnRH had occurred in the OVLT and median eminence. In the OVLT, it was associated with capillaries ventral to the preoptic recess, and its distribution in the median eminence was similar to that in the adult mouse. In both the OVLT and median eminence of the fetal and early postnatal mouse GnRH appeared to be stored in axons and axon endings, but was not detectable in nerve cell bodies or ependymal cells. These observations suggest that the potential for neuroendocrine control of gonadotropin secretion exists in the fetal mouse early as 17 days of gestation.  相似文献   

11.
In the present study, an attempt was made to correlate the neuronal responsiveness of individual preoptic-septal (POA/S) units to iontophoretically applied GnRH with the onset of sexual receptivity. In both behavioral and electrophysiological studies, ovariectomized, estrogen-primed rats were used. In behaviorally tested rats, lordosis quotients (LQ) were determined at varying times following progesterone (P) injection. For electrophysiological studies, P was given 1 hr after the start of recording. GnRH was iontophoretically applied for 30 sec at 16 nA on spontaneously discharging cells. A unit was deemed excited or inhibited if a repeatable 30% change in discharge rate was observed. From 2-10 hours as the LQ increased from 17 to 90 the total number of GnRH sensitive cells did also. The majority of responsive cells were excited by the peptide. As receptivity displayed a sharp increase from 2 to 6 hours the mean responsiveness of cells excited by GnRH was significantly elevated over inhibitory responses. These findings confirm the E/P biasing effect on POA/S unit responses to GnRH. Moreover, they suggest that a dynamic relationship exists between GnRH responses at the cellular level and sexual behavior throughout the course of steroid-induced receptivity.  相似文献   

12.
Deng TX  Wang ZX  Gao XQ  Shi YY  Ma ZY  Jin HX  Deng JB 《生理学报》2011,63(6):479-490
本文旨在探讨神经酰胺(ceramide,Cer)在酒精诱导神经细胞增殖及新生神经元形成过程中的作用及机制.因为Cer主要的代谢途径是经神经鞘磷脂合成酶(sphingomyelin synthase,SMS)作用转化成神经鞘磷脂(sphingomyelin,SM),所以我们用SMS2基因敲除(sphingomyelin ...  相似文献   

13.
Wu XM  Hu CP  Li XZ  Zou YQ  Zou JT  Li YY  Feng JT 《PloS one》2011,6(5):e20337

Background

Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.

Methodology/Principal Findings

This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3) to postnatal day 60 (P60). Asthmatic pregnant rats (AP), nerve growth factor (NGF)-treated pregnant rats (NP) and NGF antibody-treated pregnant rats (ANP) were sensitized and challenged with ovalbumin (OVA); NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP), offspring from AP (OAP), offspring from NP (ONP), and offspring from ANP (OANP). The expressions of phenylethanolamine N-methyltransferase (PNMT) protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI), corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC) were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.

Conclusion/Significance

Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.  相似文献   

14.
The anlages of the medial-basal hypothalamus (MBH), septopreoptic area (POA), Rathke's pouch, and the parietal cortex (CC) of rats (at 12.5, 14.5 and 16.5 days of gestation) were transplanted singly or in combination into the third ventricle of adult female rats, and the development of neurons in the grafts was investigated immunohistochemically with the use of antisera to tyrosine hydroxylase (TH), somatostatin (SRIH), ACTH, methionine enkephalin-Arg6-Gly7-Leu8 (Enk-8), rat corticotropin-releasing factor (rCRF), rat hypothalamic growth hormone-releasing factor (rhGRF), and luteinizing hormone-releasing hormone (LHRH). TH and all the peptides examined except LHRH were detected in distinct neurons in MBH grafts and in cografts of MBH plus Rathke's pouch from 12.5-day-old embryos. SRIH, rCRF, Enk-8, and TH were found in POA grafts from embryos of the same age. Although immunoreactive LHRH was first detected in neurons in POA grafts from 16.5-day-old embryos, it appeared in cografts of POA and MBH from 12.5-day-old embryos. The immunoreactive fibers developed in the grafts expressed the same characteristic behaviors as in intact brain; the fibers containing hormonal substances formed complexes with the vasculature like in the organum vasculosum laminae terminalis (OVLT) or in the median eminence, while the fibers containing neurotropic signals formed fiber networks surrounding other nerve cell bodies as if they synaptically associate. In CC grafts, the neurons contained TH, SRIH, rCRF, or Enk-8, and their axonal processes formed fiber networks. These findings suggest that all the hypothalamic neurons examined are committed by 12.5 days of gestation to develop maintaining transmitter phenotype and target recognition capacity.  相似文献   

15.
Expression of GFP in GnRH neurons has allowed for studies of individual GnRH neurons. We have demonstrated previously the preservation of physiological function in male GnRH-GFP mice. In the present study, we confirm using biocytin-filled GFP-positive neurons in the hypothalamic slice preparation that GFP-expressing somata, axons, and dendrites in hypothalamic slices from GnRH-GFP rats are GnRH1 peptide positive. Second, we used repetitive sampling to study hormone secretion from GnRH-GFP transgenic rats in the homozygous, heterozygous, and wild-type state and between transgenic and Wistar males after ~4 yr of backcrossing. Parameters of hormone secretion were not different between the three genetic groups or between transgenic males and Wistar controls. Finally, we performed long-term recording in as many GFP-identified GnRH neurons as possible in hypothalamic slices to determine their patterns of discharge. In some cases, we obtained GnRH neuronal recordings from individual males in which blood samples had been collected the previous day. Activity in individual GnRH neurons was expressed as total quiescence, a continuous pattern of firing of either low or relatively high frequencies or an intermittent pattern of firing. In males with both intensive blood sampling (at 6-min intervals) and recordings from their GnRH neurons, we analyzed the activity of GnRH neurons with intermittent activity above 2 Hz using cluster analysis on both data sets. The average number of pulses was 3.9 ± 0.6/h. The average number of episodes of firing was 4.0 ± 0.6/h. Therefore, the GnRH pulse generator may be maintained in the sagittal hypothalamic slice preparation.  相似文献   

16.
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.  相似文献   

17.
In a previous study, high nuclear estrogen receptor concentrations in the preoptic area (POA) were found on Day 16 of pregnancy to prime females to respond to a subsequent low dose of estradiol benzoate (EB) after hysterectomy-ovariectomy by exhibiting maternal behavior in 48 hr. Receptor concentrations in the POA were found to be higher than those in the hypothalamus (HYP). The present study investigated when nuclear estrogen receptors increase during pregnancy in POA and when the difference in receptor concentrations between POA and HYP occurs. An attempt was made to reproduce these pregnancy changes with a 16-day treatment of estrogen and progesterone in ovariectomized (OVX), nulliparous rats. In Experiment 1, we measured cytosol and nuclear estrogen receptor concentrations in the POA and HYP of female rats during pregnancy. Nuclear receptor concentrations in the POA increased beginning on Day 10, increased again on Day 16, and continued at this high level for the remainder of pregnancy. Nuclear estrogen receptor concentrations in the HYP remained at a lower level throughout most of pregnancy until Day 22 when they increased significantly. In Experiment 2, we tested the maternal behavior and measured estrogen receptor concentrations in OVX, steroid-primed, nulliparous rats after hysterectomy (H) and EB treatment. While 90% of estradiol (E) + progesterone (P)-primed females displayed short-latency maternal behavior 48 hr after H and EB treatment, 46% of E + vehicle (V)-treated controls were maternal. At 0 hr (prior to H and EB treatment), there was a significantly larger nuclear receptor accumulation in the POA but significantly attenuated receptor binding in the HYP. P treatment significantly affected cytosol and nuclear estrogen receptor dynamics. Differences in nuclear estrogen receptor concentrations were shown to be based on the number of available binding sites and not to changes in receptor affinity for estradiol.  相似文献   

18.
Glucocorticoid overexposure in utero may underlie the association between low birth weight and subsequent development of common cardiovascular and metabolic pathologies. Previously, we have shown that prenatal dexamethasone (DEX) exposure in rat reduces birth weight and programs the hypothalamic-pituitary axis and fasting and postprandial hyperglycemia in adult males and hypertension in adult males and females. This study aimed to determine 1) whether there were gender differences in prenatal DEX-programmed offspring, and 2) whether the renin-angiotensin system (RAS) plays a role in the programming of hypertension. Rats exposed to DEX in utero (100 microg.kg(-1).day(-1) from embryonic days 14-21) were of lower birth weight (by 12%, P < 0.01) and displayed full catch-up growth within the first month of postnatal life. DEX-treated male offspring in adulthood selectively displayed elevated plasma adrenocorticotropic hormone (by 221%) and corticosterone (by 188%, P < 0.05), postprandial insulin-glucose ratios (by 100%, P < 0.05), and hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (by 38%, P < 0.05). Conversely, DEX-programmed females were hypertensive (by 11%, P < 0.05), with elevated hepatic angiotensinogen mRNA expression (by 9%, P < 0.05), plasma angiotensinogen (by 61%, P < 0.05), and renin activity (by 88%, P < 0.05). These findings demonstrate that prenatal glucocorticoids program adulthood cardiovascular and metabolic physiology in a gender-specific pattern, and that an activated RAS may in part underlie the hypertension associated with prenatal DEX programming.  相似文献   

19.
Prenatal exposure to opiates can have devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. The present study was aimed at identifying cross-generational effects of prenatal morphine exposure in Sprague-Dawley rats. Pregnant rats were injected subcutaneously with either saline or morphine (10 mg/kg) twice daily during gestational days 11-18. Litter size, percentage of males and females, anogenital distances (AGDs), righting reflex, and body weight were assessed in prenatally morphine-exposed pups (first generation) and their offspring (second generation). Both prenatally morphine-exposed pups and offspring of prenatally morphine-exposed dams exhibited an increased latency to right. Additionally, second generation pups were slower in righting than first generation pups. During the early postnatal period the second generation pups weighed less than the first generation regardless of drug exposure. The AGDs of second generation male pups were decreased relative to the first generation. Our data provide important novel information about the trans-generational effects of maternal opiate abuse that may be useful for understanding/evaluating the teratogenic effects of prenatal opiate exposure.  相似文献   

20.
This study characterizes for the first time the distribution and coexistence patterns of calbindin (CB), calretinin (CR), and parvalbumin (PV) in the female and male guinea pig preoptic area (POA) during brain development, using immunohistochemistry and quantitative real‐time PCR techniques. The results show that the prenatal development of the guinea pig POA takes place in elevated levels of CB and CR immunoreactivity with the peak at embryonic day 50 (E50) and generally in newborns both these proteins reach an adult‐like pattern of immunoreactivity, contrary to PV which appears later, peaks at postnatal day (PND) 10 (P10), and stabilizes at P20. CB and CR have also overlapping distributions which differed from that of PV, and much higher expressions at mRNA and protein levels. However, CB‐positive (+), CR+ and PV+ neurons create in the guinea pig POA separate populations as CB and CR coexisted only in a small number of neurons and CB+ cells never coexpressed PV. Moreover, the density of CB+ neurons, contrary to CR+ and PV+ cells, is sexually dimorphic favoring males at all the examined stages. In conclusion, elevated levels of CR and CB at the time of intense cell migration, differentiation, myelination, and synaptogenesis in the guinea pig brain suggest that these proteins may be engaged in similar processes in the POA, while late onset of PV may be rather linked with POA maturation. As the population of CB+ cells in the POA is very large, its dimorphic development may have huge impact on the sexual differentiation of this brain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号