首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neuropilins, initially characterized as neuronal receptors, act as co-receptors for cancer related growth factors and were recently involved in several signaling pathways leading to cytoskeletal organization, angiogenesis and cancer progression. Then, we sought to investigate the ability of neuropilin-2 to orchestrate epithelial-mesenchymal transition in colorectal cancer cells. Using specific siRNA to target neuropilin-2 expression, or gene transfer, we first observed that neuropilin-2 expression endows HT29 and Colo320 for xenograft formation. Moreover, neuropilin-2 conferred a fibroblastic-like shape to cancer cells, suggesting an involvement of neuropilin-2 in epithelial-mesenchymal transition. Indeed, the presence of neuropilin-2 in colorectal carcinoma cell lines was correlated with loss of epithelial markers such as cytokeratin-20 and E-cadherin and with acquisition of mesenchymal molecules such as vimentin. Furthermore, we showed by surface plasmon resonance experiments that neuropilin-2 is a receptor for transforming-growth factor-β1. The expression of neuropilin-2 on colon cancer cell lines was indeed shown to promote transforming-growth factor-β1 signaling, leading to a constitutive phosphorylation of the Smad2/3 complex. Treatment with specific TGFβ-type1 receptor kinase inhibitors restored E-cadherin levels and inhibited in part neuropilin-2-induced vimentin expression, suggesting that neuropilin-2 cooperates with TGFβ-type1 receptor to promote epithelial-mesenchymal transition in colorectal cancer cells. Our results suggest a direct role of NRP2 in epithelial-mesenchymal transition and highlight a cross-talk between neuropilin-2 and TGF-β1 signaling to promote cancer progression. These results suggest that neuropilin-2 fulfills all the criteria of a therapeutic target to disrupt multiple oncogenic functions in solid tumors.  相似文献   

3.
CSN5/JAB1 is a critical subunit of the COP9 signalosome (CSN) and is overexpressed in many human cancers, but little is known about the role of CSN5 in colorectal cancer (CRC). To explore the functional role of CSN5 in colorectal tumorigenesis, we applied siRNA technology to silence CSN5 in HeLa, SW480, HCT116, HT29, and CaCo2 cells. CSN5 knock-down led to reduced β-catenin and phospho-bcatenin levels and this was paralleled by reduced CRC cell proliferation and reduced apoptosis rates, whereas the short-term β-catenin protein stability was enhanced by CSN5 knock-down in SW480 cells. Together, these data implicate the CSN in the pathogenesis of CRC via regulation of the Wnt/β-catenin pathway  相似文献   

4.
No published data are available about the expression of peroxisome proliferator-activated receptor γ (PPARγ) and the role of PPARγ in retinoblastoma protein (RB)-deficient human colorectal cancer (CRC) cells (SNU-C4 and SNU-C2A). Our aim was to investigate whether PPARγ is expressed in SNU-C4 and SNU-C2A cells and to elucidate possible molecular mechanisms underlying the effect of pioglitazone, a synthetic ligand for PPARγ, on cell growth in these cell lines. RT-PCR and Western blot analysis showed that both human CRC cell lines expressed PPARγ mRNA and protein. Pioglitazone inhibited the cell growth of both cell lines through G2/M phase block and apoptosis. In addition, pioglitazone caused a down-regulation of the X chromosome-linked inhibitor of apoptosis (XIAP), Bcl-2, and cyclooxygenase-2 (COX-2) under conditions leading to PPARγ down-regulation. These results suggest that pioglitazone may have therapeutic relevance or significance in the treatment of human CRC, and the down-regulation of XIAP, Bcl-2, and COX-2 may contribute to pioglitazone-induced apoptosis in these and other RB-deficient cell lines and tumors.  相似文献   

5.
Colorectal cancer is the second most common type of cancer both in Europe and Poland. During the last 30 years more than a 3-fold increase has been observed in Poland due to environmental and genetic factors. Almost all colorectal malignancies are related to the formation and malignant transformation of colorectal dysplasia and adenoma. Efforts aiming to decrease the number of colorectal cancer deaths are focused on the disease early detection. Genetic diagnosis for hereditary syndromes predisposing to colorectal cancer has been developed and is a part of the routine treatment. Most cancers are sporadic. They often develop from polyps in the colon. In addition to the genetic events described in the 1990s, showing the adenoma transformation into carcinoma that has been a prime example of malignant transformation for a long time, there are also other possibilities of neoplastic transformation. The recognition of colorectal cancer risk factors make sense as their nature is lifestyle- and diet-related. In this review paper those risk factors are presented and the prevention of colorectal cancer is discussed taking into account genetic factors.  相似文献   

6.
(?)-Epigallocatechin gallate (EGCG), the major constituent of green tea, inhibits the growth of colorectal cancer cells by inhibiting the activation of various types of receptor tyrosine kinases (RTKs). The RTK vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis induces tumor angiogenesis in colorectal cancer. This study examined the effects of EGCG on the activity of the VEGF/VEGFR axis and the expression of hypoxia-inducible factor (HIF)-1α, which promotes angiogenesis by elevating VEGF levels, in human colorectal cancer cells. Total and phosphorylated (i.e., activated) form (p-VEGFR-2) of VEGFR-2 proteins were overexpressed in a series of human colorectal cancer cell lines. Within 3 h, EGCG caused a decrease in the expression of HIF-1α protein and VEGF, HIF-1α, insulin-like growth factor (IGF)-1, IGF-2, epidermal growth factor (EGF), and heregulin mRNAs in SW837 colorectal cancer cells, which express a constitutively activated VEGF/VEGFR axis. A decrease was also observed in the expression of VEGFR-2, p-VEGFR-2, p-IGF-1 receptor, p-ERK, and p-Akt proteins within 6 h after EGCG treatment. Drinking EGCG significantly inhibited the growth of SW837 xenografts in nude mice, and this was associated with the inhibition of the expression and activation of VEGFR-2. The consumption of EGCG also inhibited activation of ERK and Akt, both of which are downstream signaling molecules of the VEGF/VEGFR axis, and reduced the expression of VEGF mRNA in xenografts. These findings suggest that EGCG may exert, at least in part, growth-inhibitory effects on colorectal cancer cells by inhibiting the activation of the VEGF/VEGFR axis through suppressing the expression of HIF-1α and several major growth factors. EGCG may therefore be useful in the chemoprevention and/or treatment of colorectal cancer.  相似文献   

7.
Stem cells for lung cancer?   总被引:12,自引:0,他引:12  
Berns A 《Cell》2005,121(6):811-813
Stem cells are believed to be crucial players in tumor development. There is much interest in identifying those compartments that harbor stem cells involved in lung cancer, given the high incidence and recurrence rate of this disease. In this issue of Cell, Kim and colleagues describe a niche in the bronchioalveolar duct junction of adult mouse lung that harbors stem cells from which adenocarcinomas are likely to arise. They enriched, propagated, and differentiated these stem cells in vitro and found that they were activated by the oncogenic protein K-ras. This study provides exciting insights into how the stem cell compartment operates during both normal lung-tissue homeostasis and the development of lung cancer. The new work offers perspectives on possible therapeutic interventions to combat lung cancer.  相似文献   

8.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

9.
10.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States, and, even though 5-15% of the total CRC cases can be attributed to individual genetic predisposition, environmental factors could be considered major factors in susceptibility to CRC. Lifestyle factors increasing the risks of CRC include elevated body mass index, obesity, and reduced physical activity. Additionally, a number of dietary elements have been associated with higher or lower incidence of CRC. In this context, it has been suggested that diets high in fruit and low in meat might have a protective effect, reducing the incidence of colorectal adenomas by modulating the composition of the normal nonpathogenic commensal microbiota. In addition, it has been demonstrated that changes in abundance of taxonomic groups have a profound impact on the gastrointestinal physiology, and an increasing number of studies are proposing that the microbiota mediates the generation of dietary factors triggering colon cancer. High-throughput sequencing and molecular taxonomic technologies are rapidly filling the knowledge gaps left by conventional microbiology techniques to obtain a comprehensive catalog of the human intestinal microbiota and their associated metabolic repertoire. The information provided by these studies will be essential to identify agents capable of modulating the massive amount of gut bacteria in safe noninvasive manners to prevent CRC. Probiotics, defined as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host" (219), are capable of transient modulation of the microbiota, and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders. Probiotics have been successfully used to manage infant diarrhea, food allergies, and inflammatory bowel disease; hence, the purpose of this review was to examine probiotic metabolic activities that may have an effect on the prevention of CRC by scavenging toxic compounds or preventing their generation in situ. Additionally, a brief consideration is given to safety evaluation and production methods in the context of probiotics efficacy.  相似文献   

11.
ABSTRACT

Methyl-β-cyclodextrin (MβCD) is an effective agent for the removal of plasma membrane cholesterol. In this study, we investigated the modulating effects of MβCD on the antiproliferation induced by benzyl isothiocyanate (BITC), an ITC compound mainly derived from papaya seeds. We confirmed that MβCD dose-dependently increased the cholesterol level in the medium, possibly through its removal from the plasma membrane of human colorectal cancer cells. The pretreatment with a non-toxic concentration (2.5 mM) of MβCD significantly enhanced the BITC-induced cytotoxicity and apoptosis induction, which was counteracted by the cholesterol supplementation. Although BITC activated the phosphoinositide 3-kinase (PI3K)/Akt pathway, MβCD dose-dependently inhibited the phosphorylation level of Akt. On the contrary, the treatment of MβCD enhanced the phosphorylation of mitogen activated protein kinases, but did not potentiate their BITC-induced phosphorylation. These results suggested that MβCD might potentiate the BITC-induced anti-cancer by cholesterol depletion and thus inhibition of the PI3K/Akt-dependent survival pathway.

Abbreviations: CDs: cyclodextrins; MβCD: methyl-β-cyclodextrin; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; PI3K: phosphoinositide 3-kinase; PDK1: phosphoinositide-dependent kinase-1; MAPK: mitogen activated protein kinase; ERK1/2: extracellular signal-regulated kinase1/2; JNK: c-Jun N-terminal kinase; PI: propidium iodide; FBS: fatal bovine serum; TLC: thin-layer chromatography; PBS(-): phosphate-buffered saline without calcium and magnesium; MEK: MAPK/ERK kinase; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-trisphosphate  相似文献   

12.
13.
Chronic inflammation is an important factor in colorectal carcinogenesis. However, evidence on the effect of pro-inflammatory and anti-inflammatory foods and nutrients is scarce. Moreover, there are few studies focusing on diet–gene interactions on inflammation and colorectal cancer (CRC). This study was designed to investigate the association between the novel dietary inflammatory index (DII) and CRC and its potential interaction with polymorphisms in inflammatory genes. Data from the Bellvitge Colorectal Cancer Study, a case–control study (424 cases with incident colorectal cancer and 401 hospital-based controls), were used. The DII score for each participant was obtained by multiplying intakes of dietary components from a validated dietary history questionnaire by literature-based dietary inflammatory weights that reflected the inflammatory potential of components. Data from four important single nucleotide polymorphisms located in genes thought to be important in inflammation-associated CRC: i.e., interleukin (IL)-4, IL-6, IL-8, and peroxisome proliferator-activated receptor-γ (PPARG) were analyzed. A direct association was observed between DII score and CRC risk (ORQ4 vs. Q1 1.65, 95 % CI 1.05–2.60, and P trend 0.011). A stronger association was found with colon cancer risk (ORQ4 vs. Q1 2.24, 95 % CI 1.33–3.77, and P trend 0.002) than rectal cancer risk (ORQ4 vs. Q1 1.12, 95 % CI 0.61–2.06, and P trend 0.37). DII score was inversely correlated with SNP rs2243250 in IL-4 among controls, and an interaction was observed with CRC risk. Neither correlation nor interaction was detected for other inflammatory genes. Overall, high-DII diets are associated with increased risk of CRC, particularly for colon cancer, suggesting that dietary-mediated inflammation plays an important role in colorectal carcinogenesis.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0447-x) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
Colorectal cancer (CRC), one of the most frequent neoplasias worldwide, has both genetic and environmental causes. As yet, however, gene–environment (G × E) interactions in CRC have been studied mostly for a small number of candidate genes only. Therefore, we investigated the possible interaction, in CRC etiology, between single-nucleotide polymorphisms (SNPs) on the one hand, and overweight, smoking and alcohol consumption on the other, at a genome-wide level. To this end, we adopted a two-tiered approach comprising a case-only screening stage I (314 cases) and a case–control validation stage II (259 cases, 1,002 controls). Interactions with the smallest p value in stage I were verified in stage II using multiple logistic regression analysis adjusted for sex and age. In addition, we specifically studied known CRC-associated SNPs for possible G × E interactions. Upon adjustment for sex and age, and after allowing for multiple testing, however, only a single SNP (rs1944511) was found to be involved in a statistically significant interaction, namely with overweight (multiplicity-corrected p = 0.042 in stage II). Several other G × E interactions were nominally significant but failed correction for multiple testing, including a previously reported interaction between rs9929218 and alcohol consumption that also emerged in our candidate SNP study (nominal p = 0.008). Notably, none of the interactions identified in our genome-wide analysis was with a previously reported CRC-associated SNP. Our study therefore highlights the potential of an “agnostic” genome-wide approach to G × E analysis.  相似文献   

16.
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.  相似文献   

17.
TNF-alpha induces tumor-selective cytotoxicity in certain cancers, but many tumors are resistant to the effects of this inflammatory cytokine. This brief hypothesis outlines my views that nitric oxide-mediated alpha-tubulin posttranslational nitrotyrosination may be a major mechanism through which TNF-alpha exerts its cytotoxic effects on cancer cells. Additionally, I propose that tumor cells that are resistant to the effects of TNF-alpha may be so because of suppressed levels of "tubulin tyrosine ligase," which is responsible for the posttranslational tyrosination of alpha-tubulin.  相似文献   

18.
Summary Methionine dependence is a defect found in many cancer cell lines that inhibits their growth in culture when methionine is replaced by its immediate precursor, homocysteine, in the culture medium. Normal cultured cells do not have this defect. This report lists the diverse and large number of animal and human cancer lines that are methionine-dependent, and critically reviews the cell biology and methionine biochemistry of the phenomenon. This work was supported by Grant CA27564 from the National Institutes of Health; The Council for Tobacco Research-USA, Inc.; The United Cancer Council, Inc.; The Cancer Research Coordinating Committee of the University of California; Grants from the Academic Senate, University of California, San Diego; and a Special Fellowship to R. M. H. from the Leukemia Society of America. An erratum to this article is available at .  相似文献   

19.
20.
Beyond tumorigenesis: cancer stem cells in metastasis   总被引:38,自引:0,他引:38  
The importance of cancer stem cells (CSCs) in tumor-initiation has been firmly established in leukemia and recently reported for a variety of solid tumors. However, the role of CSCs in multistage cancer progression, particularly with respect to metastasis, has not been well-defined. Cancer metastasis requires the seeding and successful colonization of specialized CSCs at distant organs. The biology of normal stem cells and CSCs share remarkable similarities and may have important implications when applied to the study of cancer metastasis. Furthermore, overlapping sets of molecules and pathways have recently been identified to regulate both stem cell migration and cancer metastasis. These molecules constitute a complex network of cellular interactions that facilitate both the initiation of the pre-metastasis niche by the primary tumor and the formation of a nurturing organ microenvironment for migrating CSCs. In this review, we surveyed the recent advances in this dynamic field and propose a unified model of cancer progression in which CSCs assume a central role in both tumorigenesis and metastasis. Better understanding of CSCs as a fundamental component of the metastatic cascade will lead to novel therapeutic strategies against metastatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号