首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.  相似文献   

2.
3.
4.
Global warming affects not only rice yield but also grain quality. A better understanding of the effects of climate factors on rice quality provides information for new breeding strategies to develop varieties of rice adapted to a changing world. Chalkiness is a key trait of physical quality, and along with head rice yield, is used to determine the price of rice in all markets. In the present study, we show that for every ∼1% decrease in chalkiness, an increase of ∼1% in head rice yield follows, illustrating the dual impact of chalk on amount of marketable rice and its value. Previous studies in controlled growing conditions report that chalkiness is associated with high temperature. From 1980–2009 at IRRI, Los Baños, the Philippines, annual minimum and mean temperatures, and diurnal variation changed significantly. The objective of this study was to determine how climate impacts chalkiness in field conditions over four wet and dry seasons. We show that low relative humidity and a high vapour pressure deficit in the dry season associate with low chalk and high head rice yield in spite of higher maximum temperature, but in the opposite conditions of the wet season, chalk is high and head rice yield is low. The data therefore suggest that transpirational cooling is a key factor affecting chalkiness and head rice yield, and global warming per se might not be the major factor that decreases the amount and quality of rice, but other climate factors in combination, that enable the crop to maintain a cool canopy.  相似文献   

5.
The potential environmental and health impacts of nanotechnologies triggered a recent surge of life cycle assessment (LCA) studies on nanotechnologies. Focusing on the energy use and greenhouse gas emissions impacts, we reviewed 22 LCA‐based studies on nanomaterials, coatings, photovoltaic devices, and fabrication technologies that were published until 2011. The reviewed LCA studies indicate that nanomaterials have higher cradle‐to‐gate energy demand per functional unit, and thus higher global warming impact, than their conventional counterparts. Depending on the synthesis method, carbon‐based nanoparticles (i.e., carbon nanofibers, carbon nanotubes, and fullerenes) require 1 to 900 gigajoules per kilogram (GJ/kg) of primary energy to produce, compared with ~200 megajoules per kilogram (MJ/kg) for aluminum. This is mainly attributed to the fact that nanomaterials involve an energy‐intensive synthesis process or an additional mechanical process to reduce particle size. Most reviewed studies ascertain, however, that the cradle‐to‐grave energy demand and global warming impact from nanotechnologies at a device level are lower than from conventional technologies because nanomaterials are typically used in a small amount to improve functionality and the upgraded functionality offers more energy‐efficient operation of the device. Because of the immature status of most nanotechnologies, the studies reviewed here often rely on inventory data estimated from literature values and parametric analyses based on laboratory or prototype production, warranting future analyses to confirm the current findings.  相似文献   

6.
Donna Green  Liz Minchin 《EcoHealth》2014,11(2):263-272
Closing the gap between the health and well-being status of Indigenous people living in remote areas of northern Australia and non-Indigenous Australians has long been a major target of federal health policy. With climate projections suggesting large increases in hot spells in desert regions and more extremes in rainfall in other areas of the north, direct and indirect impacts resulting from these changes are likely to further entrench this health and well-being disparity. This paper argues that it is time to explicitly draw on Indigenous definitions of health, which directly address the need to connect individual and community health to the health of their country, in order to develop effective climate adaptation and health strategies. We detail how current health policies overlook this ‘missing’ dimension of Indigenous connection to country, and why that is likely to be detrimental to the health and well-being of people living in remote communities in a climate-changed future.  相似文献   

7.
Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.  相似文献   

8.
The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.  相似文献   

9.
In this paper we are going to discuss the data of a combined experimental study in perception and judgment of the characteristics of complex acoustic signals. The structure of the experiment involved joint activity of subjects and the possibility of their verbal interaction. Some results of this work have been published previously [2,9], but they dealt only with analysis of data provided by the individual phases of the experiment. The main emphasis in this paper is on data obtained under various conditions of joint activity compared with the characteristics of individual activity.  相似文献   

10.
Measurements of the ratios of stable isotopes in the martian atmosphere and crust provide fundamental information about the evolution of the martian volatile and climate system. Current best estimates of the isotope ratios indicate that there has been substantial loss of gases to space and exchange of gases between the atmosphere and the crust throughout geologic time; exchange may have occurred through circulation of water in hydrothermal systems. Processes of volatile evolution and exchange will fractionate the isotopes in a manner that complicates the possible interpretation of isotopic data in terms of any fractionation that may have been caused by martian biota, and must be understood first. Key measurements are suggested that will enhance our understanding of the non-biological fractionation of the isotopes and of the evolution of the martian volatile system.  相似文献   

11.
Citizen science is a research practice that relies on public contributions of data. The strong recognition of its educational value combined with the need for novel methods to handle subsequent large and complex data sets raises the question: Is citizen science effective at science? A quantitative assessment of the contributions of citizen science for its core purpose – scientific research – is lacking. We examined the contribution of citizen science to a review paper by ornithologists in which they formulated ten central claims about the impact of climate change on avian migration. Citizen science was never explicitly mentioned in the review article. For each of the claims, these ornithologists scored their opinions about the amount of research effort invested in each claim and how strongly the claim was supported by evidence. This allowed us to also determine whether their trust in claims was, unwittingly or not, related to the degree to which the claims relied primarily on data generated by citizen scientists. We found that papers based on citizen science constituted between 24 and 77% of the references backing each claim, with no evidence of a mistrust of claims that relied heavily on citizen-science data. We reveal that many of these papers may not easily be recognized as drawing upon volunteer contributions, as the search terms “citizen science” and “volunteer” would have overlooked the majority of the studies that back the ten claims about birds and climate change. Our results suggest that the significance of citizen science to global research, an endeavor that is reliant on long-term information at large spatial scales, might be far greater than is readily perceived. To better understand and track the contributions of citizen science in the future, we urge researchers to use the keyword “citizen science” in papers that draw on efforts of non-professionals.  相似文献   

12.
气候变化对鸟类影响:长期研究的意义   总被引:4,自引:0,他引:4  
过去一个多世纪全球气候发生了明显变化,地球表面温度正在逐渐变暖。已有大量研究结果表明,鸟类已经在种群动态变化、生活史特性以及地理分布范围等方面对全球气候变化作出了相应的反应。根据全球范围内气候变化对鸟类影响的研究资料,尤其是北美和欧洲的一些长期研究项目的成果,综述了气候变化对鸟类分布范围、物候、繁殖和种群动态变化等方面的可能影响。这些长期研究项目为探讨气候变化在个体和种群的水平上如何长时间地影响鸟类提供了独特的机会,对未来中国鸟类学研究也会有所裨益。  相似文献   

13.
Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000–10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.  相似文献   

14.
Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for four drought sensitivity species groups using a weight-of-evidence approach. For all groups, the model that predicted mortality as a function of mean drought length had the greatest plausibility. Model tests confirmed that the models for all groups except the most drought tolerant had predictive value. We assumed that no relationship exists between drought and mortality for the drought-tolerant group. We used these empirical models to develop a drought extension for the forest landscape disturbance and succession model LANDIS-II, and applied the model in Oconto county, Wisconsin (USA) to assess the influence of drought on forest dynamics relative to other factors such as stand-replacing disturbance and site characteristics. The simulations showed that drought stress does affect species composition and total biomass, but effects on age classes, spatial pattern, and productivity were insignificant. We conclude that (for the upper Midwest) (1) a drought-induced tree mortality signal can be detected using FIA data, (2) tree species respond primarily to the length of drought events rather than their severity, (3) the differences in drought tolerance of tree species can be quantified, (4) future increases in drought can potentially change forest composition, and (5) drought is a potentially important factor to include in forest dynamics simulations because it affects forest composition and carbon storage.  相似文献   

15.
Much of the literature on common-pool resources has focused on elucidating the social mechanisms and local institutions that lead to the regulation of common-pool resources. There is much less information about how management regimes translate into environmental impacts or how environmental impacts influence the emergence of management decisions. We use quantitative and qualitative methods to investigate the link between forest condition, agricultural change and the emergence of common-pool resource management regimes in two indigenous Kichwa communities in the Ecuadorian Amazon. We show that forest condition is linked to agricultural production and that the perception of common-pool resource scarcity influences the emergence of management regimes. We argue that population pressure, market forces and resource scarcity, which are usually associated with measures of agricultural change can also promote the emergence of common-pool resource management regimes.  相似文献   

16.
Recent climate reconstructions are analyzed specifically for insights into those patterns of climate variability in past centuries with greatest impact on the North American region. Regional variability, largely associated with the El Nino/Southern Oscillation (ENSO) phenomenon, the North Atlantic Oscillation (NAO), and multidecadal patterns of natural variability, are found to mask the emergence of an anthropogenic temperature signal in North America. Substantial recent temperature anomalies may however indicate a possible recent emergence of this signal in the region. Multidecadal North Atlantic variability is likely to positively reinforce any anthropogenic warming over substantial parts of North America in coming decades. The recent magnitudes of El Nino events appear to be unprecedented over the past several centuries. These recent changes, if anthropogenic in nature, may outweigh the projection of larger-scale climate change patterns onto the region in a climate change scenario. The implications of such changes for North America, however, are not yet clear. These observations suggest caution in assessing regional climate change scenarios in North America without a detailed consideration of possible anthropogenic changes in climate patterns influencing the region.  相似文献   

17.
18.
Ecosystems - Nutrient reduction in impacted lowland freshwater systems is ecologically and culturally important. Gaining a greater insight into how lakes respond to lowering nutrient loads and how...  相似文献   

19.

Background

Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species.

Methodology/Principal Findings

We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species'' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming.

Conclusions/Significance

Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.  相似文献   

20.

Background

There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors.

Methods and Findings

Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5°C, but Tmin values above 18°C showed a rapidly increasing effect. Maximum temperature above 20°C also showed an increasing effect on dengue incidence with a peak around 32°C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant.

Conclusions

Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号