首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A receptor for angiostatin was identified on the surface of endothelial cells as F1–F0 ATP synthase (Moser et al., 1999). Proc. Natl. Acad. Sci. U.S.A. 96, 2811–2816. This ectopic ATP synthase catalyzes ATP synthesis and is inhibited by angiostatin over a wide pH range. Endothelial cells grown at normal pH suffer no ill effects from this angiostatin-mediated inhibition of ATP synthase, whereas endothelial cells grown at low, tumor-like extracellular pH cannot maintain a normal intracellular pH and die. Angiostatin inhibits both ATP synthesis and ATP hydrolysis (Moser et al., 2001) and interferes with intracellular pH regulation (Wahl and Grant, 2002; Wahl et al., 2002). Although angiostatin administered intravenously is cleared from the circulation in a matter of minutes, angiostatin-mimetics that are more stable have potential for clinical application. An angiostatin-mimetic activity has recently been observed using a polyclonal antibody against the β catalytic subunit of ATP synthase. In order to explore the mechanism of action of angiostatin and its mimetics, further work needs to be done to evaluate clinical applicability, specificity, and contraindications for this class of therapeutics.  相似文献   

2.
The influence of angiostatin K1-4.5, a fragment of the heavy chain of plasmin and a powerful inhibitor of angiogenesis, on kinetic parameters (k Pg and K Pg) of human Glu-plasminogen activation under the action of urokinase (uPA) not having affinity for fibrin and fibrin-specific tissue plasminogen activator (tPA) was investigated. Angiostatin does not affect on the k Pg value, but increases the value of K Pg plasminogen activation by urokinase. A decrease in the k Pg value and an increase in the K Pg value were found for fibrin-stimulated plasminogen activation by tPA with increasing concentrations of angiostatin. The obtained results show that angiostatin is a competitive inhibitor of the uPA activator activity, while it inhibits the activator activity of tPA with a mixed type. Such an influence of angiostatin on the kinetic constants of the plasminogen activation by urokinase suggests that angiostatin dose-dependent manner replaces plasminogen in the binary enzyme-substrate complex uPA-Pg. In the case of fibrin-stimulated plasminogen activation by tPA, both zymogen and tPA are bound to fibrin with the formation of the effective triple tPA-Pg-fibrin complex. Angiostatin replaces plasminogen both from the fibrin surface and from the enzyme-substrate tPA-Pg complex, which leads to a decrease in k Pg and an increase in K Pg of the plasminogen activation. Inhibition constants by angiostatin (K i) of plasminogen-activator activities of uPA and tPA determined by the Dixon method were found to be 0.59 ± 0.04 and 0.12 ± 0.05 μM, respectively.  相似文献   

3.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the αvβT5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the αvβT5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either αvβT5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the βT1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of αvβT3, αvβT5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the αvβT3 or αvβT5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell-matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

4.
Tumor growth requires the development of new vessels that sprout from pre-existing normal vessels in a process known as "angiogenesis" [Folkman (1971) N Engl J Med 285:1182-1186]. These new vessels arise from local capillaries, arteries, and veins in response to the release of soluble growth factors from the tumor mass, enabling these tumors to grow beyond the diffusion-limited size of approximately 2 mm diameter. Angiostatin, a naturally occurring inhibitor of angiogenesis, was discovered based on its ability to block tumor growth in vivo by inhibiting the formation of new tumor blood vessels [O'Reilly et al. (1994a) Cold Spring Harb Symp Quant Biol 59:471-482]. Angiostatin is a proteolytically derived internal fragment of plasminogen and may contain various members of the five plasminogen "kringle" domains, depending on the exact sites of proteolysis. Different forms of angiostatin have measurably different activities, suggesting that much remains to be elucidated about angiostatin biology. A number of groups have sought to identify the native cell surface binding site(s) for angiostatin, resulting in at least five different binding sites proposed for angiostatin on the surface of endothelial cells (EC). This review will consider the data supporting all of the various reported angiostatin binding sites and will focus particular attention on the angiostatin binding protein identified by our group: F(1)F(O) ATP synthase. There have been several developments in the quest to elucidate the mechanism of action of angiostatin and the regulation of its receptor. The purpose of this review is to describe the highlights of research on the mechanism of action of angiostatin, its' interaction with ATP synthase on the EC surface, modulators of its activity, and issues that should be explored in future research related to angiostatin and other anti-angiogenic agents.  相似文献   

5.
Angiogenesis after tissue injury occurs in a matrix environment consisting of fibrin, fibronectin, and vitronectin as the major extracellular matrix (ECM) constituents. ECM-integrin interactions is critical for angiogenesis and failure to bind a ligand to certain integrin receptors (αvβ3 or αvβ5) inhibits angiogenesis. The ligand that binds to αvβ3 or αvβ5 integrin receptors during microvascular angiogenesis has not been identified. Our hypothesis is that provisional matrix molecules provide the environmental context cues to microvascular endothelial cells and promote angiogenesis by decreased programmed cell death. Using cultured human microvascular endothelial cells, we show that vitronectin, in comparison to growth on alternative provisional matrix molecules (fibronectin, fibrinogen plus thrombin), collagen I, and basement membrane molecules (collagen IV), significantly reduces microvascular endothelial cell death in vitro. This reduction was observed using morphologic criteria, TdT-mediated dUTP nick end labeling (TUNEL) assay, histone release into the cytoplasm, and thymidine release into the supernatant. Though our data confirm that vitronectin may bind to more than one integrin receptor to reduce MEC apoptosis, binding to the αv component appears to be the critical integrin subcomponent for reducing apoptosis. J. Cell. Physiol. 175:149–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Angiostatin, a plasminogen fragment containing 3-4 N-terminal kringle domains, is a potent inhibitor of tumor-induced angiogenesis, but its mechanism of action is unclear. Angiostatin is a ligand for integrin alphavbeta(3) but does not induce stress fiber formation upon integrin binding, suggesting that angiostatin is a potential integrin antagonist. Plasmin, the parent molecule of angiostatin and a major extracellular protease, induces platelet aggregation, migration of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types. In the current study, we found that plasmin specifically bound to alphavbeta(3) through the kringle domains and induced migration of endothelial cells. In contrast, angiostatin did not induce cell migration. Notably, angiostatin, anti-alphavbeta(3) antibodies, RGD-peptide, and a serine protease inhibitor effectively blocked plasmin-induced cell migration. These results suggest that plasmin-induced migration of endothelial cells requires alphavbeta(3) and the catalytic activity of plasmin and that this process is a potential target for the inhibitory activity of angiostatin.  相似文献   

7.
Neutrophils undergo spontaneous apoptosis, but their survival can be extended during inflammatory responses. alpha(M)beta(2) is reported either to delay or accelerate neutrophil apoptosis, but the mechanisms by which this integrin can support such diametrically opposed responses are poorly understood. The abilities of closely related alpha(M)beta(2) ligands, plasminogen and angiostatin, derived from plasminogen, as well as fibrinogen and its two derivative alpha(M)beta(2) recognition peptides, P1 and P2-C, differed markedly in their effects on neutrophil apoptosis. Plasminogen, fibrinogen, and P2-C suppressed apoptosis via activation of Akt and ERK1/2 kinases, while angiostatin and P1 failed to activate these prosurvival pathways and did not prevent neutrophil apoptosis. Using cells transfected with alpha(M)beta(2) or its individual alpha(M) or beta(2) subunits, and purified receptors and its constituent chains, we show that engagement of both subunits with prosurvival ligands is essential for induction of the prosurvival response. Hence, engagement of a single integrin by closely related ligands can induce distinct signaling pathways, which can elicit distinct cellular responses.  相似文献   

8.
Angiostatin consisting of the first four-kringle domains of the plasminogen potently inhibits angiogenesis in vitro and in vivo. However, the molecular mechanism of action whereby angiostatin mediates its inhibitory effect on proliferating endothelial cells remains elusive. We therefore used the proliferating cultured human umbilical vein endothelial cells (HUVECs) promoted by vascular endothelial growth factor A to identify the endogenous signaling elements that mediate the antiangiogenic effect of angiostatin. Treatment of HUVEC with angiostatin at a concentration known to inhibit cell proliferation and induce apoptosis resulted in induction of p53-, Bax-, and tBid-mediated release of cytochrome c into the cytosol. In addition, angiostatin also activated the Fas-mediated apoptotic pathway in part via up-regulation of FasL mRNA, down-regulation of c-Flip, and activation of caspase 3. These results suggest that the anti-angiogenic action of angiostatin is likely mediated by two distinct signaling pathways, one intrinsic mediated by p53 while the other extrinsic involved in FasL engagement and mitochondria dysfunction.  相似文献   

9.
Angiostatin, the N-terminal four kringles (K1-4) of plasminogen, blocks tumor-mediated angiogenesis and has great therapeutic potential. However, angiostatin's mechanism of anti-angiogenic action is unclear. We found that bovine arterial endothelial (BAE) cells adhere to angiostatin in an integrin-dependent manner and that integrins alpha(v)beta(3), alpha(9)beta(1), and to a lesser extent alpha(4)beta(1), specifically bind to angiostatin. alpha(v)beta(3) is a predominant receptor for angiostatin on BAE cells, since a function-blocking antibody to alpha(v)beta(3) effectively blocks adhesion of BAE cells to angiostatin, but an antibody to alpha(9)beta(1) does not. epsilon-Aminocaproic acid, a Lys analogue, effectively blocks angiostatin binding to BAE cells, indicating that an unoccupied Lys-binding site of the kringles may be required for integrin binding. It is known that other plasminogen fragments containing three or five kringles (K1-3 or K1-5) have an anti-angiogenic effect, but plasminogen itself does not. We found that K1-3 and K1-5 bind to alpha(v)beta(3), but plasminogen does not. These results suggest that the anti-angiogenic action of angiostatin may be mediated via interaction with alpha(v)beta(3). Angiostatin binding to alpha(v)beta(3) does not strongly induce stress-fiber formation, suggesting that angiostatin may prevent angiogenesis by perturbing the alpha(v)beta(3)-mediated signal transduction that may be necessary for angiogenesis.  相似文献   

10.
During platelet activation, fibrinogen binds to its specific platelet receptor, integrin αIIbβ3, thus completing the final common pathway for platelet aggregation. Norcantharidin (NCTD) is a promising anticancer agent in China from medicinal insect blister beetle. In this study, we provided the evidence to demonstrate NCTD (0.1–1.0 μM) possesses very powerful antiplatelet activity in human platelets; nevertheless, it had no effects on surface P‐selectin expression and only slight inhibition on ATP‐release reaction in activated platelets. Moreover, NCTD markedly hindered integrin αIIbβ3 activation by interfering with the binding of FITC‐labelled PAC‐1. It also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as clot retraction. Additionally, NCTD attenuated phosphorylation of proteins such as integrin β3, Src and FAK in platelets spreading on immobilized fibrinogen. These results indicate that NCTD restricts integrin αIIbβ3‐mediated outside‐in signalling in human platelets. Besides, NCTD substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation and prolonged the bleeding time in mice. In conclusion, NCTD has dual activities, it can be a chemotherapeutic agent for cancer treatment, and the other side it possesses powerful antiplatelet activity for treating thromboembolic disorders.  相似文献   

11.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Angiostatin binds to endothelial cell (EC) surface F(1)-F(0) ATP synthase, leading to inhibition of EC migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F(1) ATP synthase and inhibited F(1)-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. Although exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared with angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis.  相似文献   

13.
The αvβ3 integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4-kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to αvβ3 integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a six amino acid loop of AgRP with a nine amino acid loop containing the Arg-Gly-Asp integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting to identify clones with high affinity to detergent-solubilized αvβ3 integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing αvβ3 integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown to bind specifically to αvβ3 integrins and had only minimal or no binding to αvβ5, α5β1, and αiibβ3 integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally occurring ligand for αvβ3 and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second-generation libraries by individually randomizing these loops in one of the high-affinity integrin-binding variants. Screening of these loop-randomized libraries against αvβ3 integrins resulted in peptides that retained high affinities for αvβ3 and had increased specificities for αvβ3 over αiibβ3 integrins. Collectively, these data validate AgRP as a scaffold for protein engineering and demonstrate that modification of a single loop can lead to AgRP-based peptides with antibody-like affinities for their target.  相似文献   

14.
Angiostatin is a cleavage product of plasminogen that has anti-angiogenic properties. We investigated whether the effects of angiostatin on endothelial cells are mediated by ceramide, a lipid implicated in endothelial cell signaling. Our results demonstrate that angiostatin produces a transient increase in ceramide that correlates with actin stress fiber reorganization, detachment and death. DNA array expression analysis performed on ceramide-treated human endothelial cells demonstrated induction of certain genes involved in cytoskeleton organization. Specifically, we report that treatment with angiostatin or ceramide results in the activation of RhoA, an important effector of cytoskeletal structure. We also show that treatment of endothelial cells with the antioxidant N-acetylcysteine abrogates morphological changes and cytotoxic effects of treatment with angiostatin or ceramide. These findings support a model in which angiostatin induces a transient rise in ceramide, RhoA activation and free radical production.  相似文献   

15.
Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin‐activated human PLT were overlaid on resting or tumour necrosis factor (TNF)‐α‐treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co‐culturing with HIMEC. TNF‐α up‐regulated ICAM‐1, αvβ3 and FKN expression on HIMEC. When thrombin‐activated PLT were co‐cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF‐α. PLT adhesion to HIMEC was VCAM‐1 and TF independent but ICAM‐1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF‐α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co‐cultured with TNF‐α‐pre‐treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin‐activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF‐α‐pre‐treated HIMEC is mediated by ICAM‐1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that inflamed HIMEC may recruit PLT which, upon release of pro‐angiogenic factors, actively contribute to inflammation‐induced angiogenesis.  相似文献   

16.
Osteopontin (OPN) is a ubiquitously expressed, multifunctional, and highly phosphorylated protein. OPN contains two neighboring integrin-binding motifs, RGD and SVVYGLR, which mediate interaction with cells. Phosphorylation and proteolytic processing affect the integrin-binding activities of OPN. Here we report that the kinase, FAM20C, phosphorylates Ser146 in the 143RGDSVVYGLR152 motif of OPN and that Ser146 is phosphorylated in vivo in human and bovine milk. Ser146 is located right next to the RGD motif and close by the regulatory thrombin and plasmin cleavage sites in the OPN sequence. Phosphorylation of Ser146 could potentially affect the proteolytic processing and the integrin-binding activities of OPN. We show that phosphorylation of Ser146 does not affect the susceptibility of OPN for thrombin or plasmin cleavage. However, phosphorylation of Ser146 significantly reduces the RGD-mediated interaction with the αvβ3 integrin in MDA-MB-435 and Moαv cells. This suggests a new mechanism by which specific phosphorylation of OPN can regulate interaction with the αvβ3 integrin and thereby affect OPN-cell interaction.  相似文献   

17.
Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells.   总被引:26,自引:0,他引:26  
Angiostatin which contains the first four kringle domains of plasminogen has been documented to be a potent inhibitor of angiogenesis. More recently, another kringle structure within plasminogen but outside angiostatin, known as kringle 5 (K5), was found to inhibit endothelial cell proliferation and migration. Here, we report the cloning and expression of mouse kringle 5 (rK5) in a bacterial expression system. The protein was purified to homogeneity using a Ni-NTA column. rK5 inhibited both proliferation and migration of endothelial cells with ED50's of 10 nM and < 500 nM, respectively. In addition, we show for the first time that rK5 causes cell cycle arrest and apoptosis, shedding further insight into rK5's mechanism of action. Finally, we show that these actions are endothelial cell specific.  相似文献   

18.
In this study we characterized αvβ5 integrin on HT-1080 fibrosarcoma cells. First, αvβ5 integrin was immunoprecipitated by 125I-surface labeled HT-1080 cells using a polyclonal antibody specific for β5 subunit (cytoplasmic domain). A heterodimer consisting of a β5-chain running at 100 kD (reduced) and 90 kD (non-reduced) associated with an α-chain 145 kD (non-reduced) and 125 kD (reduced) was obtained by SDS-PAGE and autoradiography. By double-immunofluorescence labeling, we then investigated αvβ5 distribution on HT-1080 cells. Upon staining with anti-β5 subunit antibody, αvβ5 was detected in focal contacts on cells attached to vitronectin (vn), co-localizing with vinculin at the end of actin filaments. Comparative analysis of αvβ5 and αvβ3 showed that both receptors can occupy the same focal contact, although on the same cell mostly they are clustered in independent focal contacts. Focal distribution of αvβ5 was also found on normal human fibroblasts attached to vn, suggesting that this is not a specific feature of HT-1080 cells. Finally, we investigated the role of αvβ5 and αvβ3 integrins in mediating HT-1080 cell adhesion to vn. Inhibition studies using antibodies with function-blocking activity to αvβ5 and αvβ3 suggest a primary role of αvβ5 to support cell adhesion, with a weak contribute of αvβ3. Their activity can be modulated by divalent cations. Our results provide the first evidence of focal distribution of αvβ5 integrin on cells attached to vn.  相似文献   

19.
Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser1177), but not that of eNOS-Thr495 or eNOS-Ser114. The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser1177 phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser473 and S6K-Thr389. However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser1177 phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser1177 phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3–Akt–S6K–eNOS-Ser1177 phosphorylation, suggesting an important role for CCN1 in vasodilation.  相似文献   

20.
Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2,3,23-trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2 in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号