首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common hereditary retinal degeneration, retinitis pigmentosa (RP), leads to blindness by degeneration of cone photoreceptors. Meanwhile, genetic studies have shown that a significant proportion of RP genes is expressed only by rods, which raises the question of the mechanism leading to the degeneration of cones. Following the concept of sustainability factor cones, rods secrete survival factors that are necessary to maintain the cones, named Rod-derived Cone Viability Factors (RdCVFs). In patients suffering from RP, loss of rods results in the loss of RdCVFs expression and followed by cone degeneration. We have identified the bifunctional genes nucleoredoxin-like 1 and 2 that encode for, by differential splicing, a thioredoxin enzyme and a cone survival factor, respectively RdCVF and RdCVF2. The administration of these survival factors would maintain cones and central vision in most patients suffering from RP.  相似文献   

2.

Background

Cone degeneration is the hallmark of the inherited retinal disease retinitis pigmentosa. We have previously identified a trophic factor "Rod-derived Cone Viability Factor (RdCVF) that is secreted by rods and promote cone viability in a mouse model of the disease.

Results

Here we report the bioinformatic identification and the experimental analysis of RdCVF2, a second trophic factor belonging to the Rod-derived Cone Viability Factor family. The mouse RdCVF gene is known to be bifunctional, encoding both a long thioredoxin-like isoform (RdCVF-L) and a short isoform with trophic cone photoreceptor viability activity (RdCVF-S). RdCVF2 shares many similarities with RdCVF in terms of gene structure, expression in a rod-dependent manner and protein 3D structure. Furthermore, like RdCVF, the RdCVF2 short isoform exhibits cone rescue activity that is independent of its putative thiol-oxydoreductase activity.

Conclusion

Taken together, these findings define a new family of bifunctional genes which are: expressed in vertebrate retina, encode trophic cone viability factors, and have major therapeutic potential for human retinal neurodegenerative diseases such as retinitis pigmentosa.  相似文献   

3.
We previously characterized nucleoredoxin (NRX) as a negative regulator of the Wnt signaling pathway through Dishevelled (Dvl). We perform a comprehensive search for other NRX-interacting proteins and identify Flightless-I (Fli-I) as a novel NRX-binding partner. Fli-I binds to NRX and other related proteins, such as Rod-derived cone viability factor (RdCVF), whereas Dvl binds only to NRX. Endogenous NRX and Fli-I in vivo interactions are confirmed. Both NRX and RdCVF link Fli-I with myeloid differentiation primary response gene (88) (MyD88), an important adaptor protein for innate immune response. NRX and RdCVF also potentiate the negative effect of Fli-I upon lipopolysaccharide-induced activation of NF-κB through the Toll-like receptor 4/MyD88 pathway. Embryonic fibroblasts derived from NRX gene-targeted mice show aberrant NF-κB activation upon lipopolysaccharide stimulation. These results suggest that the NRX subfamily of proteins forms a link between MyD88 and Fli-I to mediate negative regulation of the Toll-like receptor 4/MyD88 pathway.  相似文献   

4.
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.  相似文献   

5.
Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.  相似文献   

6.
7.
Rod-derived cone viability factor (RdCVF) is a trophic factor of the thioredoxins family that promotes the survival of cone photoreceptors. It is encoded by the nucleoredoxin-like gene 1 Nxnl1 which also encodes by alternative splicing a long form of RdCVF (RdCVFL), a thioredoxin enzyme that interacts with TAU. The known role of thioredoxins in the defense mechanism against oxidative damage led us to examine the retinal phenotype of the Nxnl1−/− mice exposed to photooxidative stress. Here we found that, in contrast to wild-type mice, the rod photoreceptors of Nxnl1−/− mice are more sensitive to light after exposure to 1700 or 2500 lx. The delivery of RdCVF by AAV to mice deficient of Nxnl1−/− protects rod photoreceptors from light damage. Interestingly, the RdCVF2L protein, encoded by the paralog gene Nxnl2, is able to reduce TAU phosphorylation, as does RdCVFL, but does not protect the rod from light damage. Our result shows that the Nxnl1 gene, through the thioredoxin RdCVFL, is part of an endogenous defense mechanism against photooxidative stress that is likely of great importance for human vision.  相似文献   

8.
Apoptosis is the common pathway to photoreceptor cell death in many eye diseases including age-related macular degeneration which affects more than 8 million individuals in the United States alone. RdCVF, a truncated mouse thioredoxin is specifically expressed by rod photoreceptor cells and prevents the apoptosis of cone cells. However the protective mechanism of RdCVF and the implications of its human homologue, thioredoxin-like 6 (TXNL6), on the apoptosis of retinal cells remain unknown. In this study, we examined the function of TXNL6 and investigated its mechanism of protection using a cone photoreceptor cell line, 661W. We found that the photooxidative stress-induced degradation of NF-kappaB proteins is rescued by overexpression of TXNL6, which enabled the NF-kappaB transactivation activity. Furthermore, the overexpression of TXNL6 rescued the photooxidative stress-induced apoptosis of 661W cells. Interestingly, this protective effect was significantly blocked by NF-kappaB specific inhibitors demonstrating that TXNL6 exerts its protective effect against apoptosis via NF-kappaB. Taken together, our study shows that the TXNL6 probably protects retinal cells from photooxidative damage-induced apoptosis via upregulation of NF-kappaB activity. The identification of TXNL6 and the demonstration of its protective mechanism offer new insights into treatment possibilities for photoreceptor cell degradation.  相似文献   

9.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. Mutations in the RP2 gene are linked to the second most frequent form of X-linked retinitis pigmentosa. RP2 is a plasma membrane-associated protein of unknown function. The N-terminal domain of RP2 shares amino acid sequence similarity to the tubulin-specific chaperone protein co-factor C. The C-terminus consists of a domain with similarity to nucleoside diphosphate kinases (NDKs). Human NDK1, in addition to its role in providing nucleoside triphosphates, has recently been described as a 3' to 5' exonuclease. Here, we show that RP2 is a DNA-binding protein that exhibits exonuclease activity, with a preference for single-stranded or nicked DNA substrates that occur as intermediates of base excision repair pathways. Furthermore, we show that RP2 undergoes re-localization into the nucleus upon treatment of cells with DNA damaging agents inducing oxidative stress, most notably solar simulated light and UVA radiation. The data suggest that RP2 may have previously unrecognized roles as a DNA damage response factor and 3' to 5' exonuclease.  相似文献   

10.
The beta-lactamase gene from the RP1 plasmid transposes into at least two Pseudomonas putida degradative plasmids. Donor strains that carry RP1 (bla+ tet+ aphA+) and a degradative plasmid yield transconjugants that have only the bla+ marker of RP1. This occurs in up to 80% of all bla+ transconjugants. Segregation of the bla+ marker requires the presence of a degradative plasmid in the donor and is only observed in transconjugants that have received degradative markers. The bla+ tet aphA transconjugants show 100% linkage of bla+ to degradative markers in conjugation,transduction, and transformation crosses. A transduction cross of an (RP1), (SAL) donor shows that 8% of all SAL plasmids also carry the transposed bla+ marker. Tn401 is the name we assign to the bla+ transposon from RP1 observed in Pseudomonas. Its identity with the RP1 bla+ transposon observed in Escherichia coli is not known. In four cases, Tn401 has inserted into the camphor genes of the CAM-OCT plasmid.  相似文献   

11.
Here we have characterized the Rickettsia prowazekii RP534 protein, a homologue of the Pseudomonas aeruginosa ExoU phospholipase A (PLA) secreted cytotoxin. Our studies showed that purified recombinant RP534 PLA possessed the predicted PLA2 and lyso-PLA2 activities based on what has been published for P. aeruginosa ExoU. RP534 also displayed PLA1 activity under the conditions tested, whereas ExoU did not. In addition, recombinant RP534 displayed a basal PLA activity that could hydrolyze phosphatidylcholine in the absence of any eukaryotic cofactors. Interestingly, the addition of bovine liver superoxide dismutase 1 (SOD1), a known activator of P. aeruginosa ExoU, resulted in an increased rate of RP534-catalyzed phospholipid hydrolysis, indicating that mechanisms of activation of the ExoU family of PLAs may be evolutionarily conserved. The mechanism of SOD1-dependent stimulation of RP534 was further examined using active site mutants and a fluorogenic phospholipid substrate whose hydrolysis by RP534 over a short time course is measureable only in the presence of SOD1. These studies suggest a mechanism by which SOD1 stimulates RP534 activity once it has bound to the substrate. We also show that antibody raised against RP534 was useful for immunoprecipitating active RP534 from R. prowazekii lysed cell extracts, thus verifying that this protein is expressed and active in rickettsiae isolated from embryonated hen egg yolk sacs.  相似文献   

12.
Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.  相似文献   

13.
The roof plate (RP) of the midbrain shows an unusual plasticity, as it is duplicated or interrupted by experimental manipulations involving the mid/hindbrain organizer or FGF8. In previous experiments, we have found that FGF8 induces a local patterning center, the isthmic node, that is essential for the local development of a RP. Here, we show that the plasticity of the midbrain RP derives from two apparently antagonistic influences of FGF8. On the one hand, FGF8 widens beyond the neural folds the competence of the neuroepithelium to develop a RP by inducing the expression of LMX1B and WNT1. Ectopic overexpression of these two factors is sufficient to induce widely the expression of markers of the mature RP in the midbrain. On the other hand, FGF8 exerts a major destabilizing influence on RP maturation by controlling signaling by members of the TGFbeta superfamily belonging to the BMP, GDF and activin subgroups. We show in particular that FGF8 tightly modulates follistatin expression, thus progressively restraining the inhibitory influence of activin B on RP differentiation. These regulations, together with FGF8 triggered apoptosis, allow the formation of a RP progress zone at some distance from the FGF8 source. Posterior elongation of the RP is permitted when the source of FGF8 withdraws. Growth of the posterior midbrain neuroepithelium and convergent extension movements induced by FGF8 both contribute to increase the distance between the source of FGF8 and the maturing RP. Normally, the antagonistic regulatory interactions spread smoothly across the midbrain. Plasticity of midbrain RP differentiation probably results from an experimentally induced imbalance between regulatory pathways.  相似文献   

14.
Genetic loci for X-linked retinitis pigmentosa (XLRP) have been mapped between Xp11.22 and Xp22.13 (RP2, RP3, RP6, and RP15). The RP3 gene, which is responsible for the predominant form of XLRP in most Caucasian populations, has been localized to Xp21.1 by linkage analysis and the map positions of chromosomal deletions associated with the disease. Previous linkage studies have suggested that RP3 is flanked by the markers DXS1110 (distal) and OTC (proximal). Patient BB was thought to have RP because of a lesion at the RP3 locus, in addition to chronic granulomatous disease, Duchenne muscular dystrophy (DMD), mild mental retardation, and the McLeod phenotype. This patient carried a deletion extending approximately 3 Mb from DMD in Xp21.3 to Xp21.1, with the proximal breakpoint located approximately 40 kb centromeric to DXS1110. The RP3 gene, therefore, is believed to reside between DXS1110 and the proximal breakpoint of the BB deletion. In order to refine the location of RP3 and to ascertain patients with RP3, we have been analyzing several XLRP families for linkage to Xp markers. Linkage analysis in an American family of 27 individuals demonstrates segregation of XLRP with markers in Xp21.1, consistent with the RP3 subtype. One affected mate shows a recombination event proximal to DXS1110. Additional markers within the DXS1110-OTC interval show that the crossover is between two novel polymorphic markers, DXS8349 and M6, both of which are present in BB DNA and lie centromeric to the proximal breakpoint. This recombination places the XLRP mutation in this family outside the BB deletion and redefines the location of RP3.  相似文献   

15.
X-linked retinitis pigmentosa (XLRP) is a clinically and genetically heterogeneous degenerative disease of the retina. At least five loci have been mapped for XLRP; of these, RP2 and RP3 account for 10%-20% and 70%-90% of genetically identifiable disease, respectively. However, mutations in the respective genes, RP2 and RPGR, were detected in only 10% and 20% of families with XLRP. Mutations in an alternatively spliced RPGR exon, ORF15, have recently been shown to account for 60% of XLRP in a European cohort of 47 families. We have performed, in a North American cohort of 234 families with RP, a comprehensive screen of the RP2 and RPGR (including ORF15) genes and their 5' upstream regions. Of these families, 91 (39%) show definitive X-linked inheritance, an additional 88 (38%) reveal a pattern consistent with X-linked disease, and the remaining 55 (23%) are simplex male patients with RP who had an early onset and/or severe disease. In agreement with the previous studies, we show that mutations in the RP2 gene and in the original 19 RPGR exons are detected in <10% and approximately 20% of XLRP probands, respectively. Our studies have revealed RPGR-ORF15 mutations in an additional 30% of 91 well-documented families with X-linked recessive inheritance and in 22% of the total 234 probands analyzed. We suggest that mutations in an as-yet-uncharacterized RPGR exon(s), intronic changes, or another gene in the region might be responsible for the disease in the remainder of this North American cohort. We also discuss the implications of our studies for genetic diagnosis, genotype-phenotype correlations, and gene-based therapy.  相似文献   

16.
PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene.  相似文献   

17.
Hybrid plasmids obtained as a result of Mu phage insertions into the RP4::D3112 plasmid in Escherichia coli cells were studied. Stable maintenance of RP4::D3112 plasmid in E. coli cells was provided by using the D3112 phage genome with a point polar mutation in the A gene which prevented early genes' expression. The presence of D3112A- in the RP4 plasmid has been shown to have no effect on efficiency of phage Mu transposition into this plasmid. Moreover, RP4 and D3112 genomes were equivalent targets for Mu integration. The integration of transposable phage into genome of nonrelated phage can be used as one of the approaches to construct recombinant phage genomes in vivo in the absence of DNA homology.  相似文献   

18.
The success attributed to identification and characterization of gel separated proteins by mass spectrometry (MS) is highly dependent on the percentage of an entire sequence covered by matching peptides derived from enzymatic digestion. Desalting and concentration of peptide mixtures on reversed-phase (RP) microcolumns prior to mass spectrometric analysis have resulted in increased signal-to-noise ratio and sensitivity, and consequently higher sequence coverage. A large proportion of peptides, however, remains undetected by MS presumably because they are lost during sample preparation on microcolumns, or are suppressed in the ionization process. We report here the use of graphite powder packed in constricted GELoader tips as an alternative to RP microcolumns for desalting and concentration of peptide mixtures prior to MS. Such columns are able to retain small and/or hydrophilic peptides that can be lost when using RP microcolumns. In addition, we show that samples contaminated with small biological polymers can readily be analyzed using graphite powder rather than RP microcolumns, since the polymer molecules bind strongly to graphite and are not eluted with the peptides.  相似文献   

19.
Retinyl palmitate (RP), an ingredient of cosmetic and medical skin-care preparations, has been reported to be photo-genotoxic/photo-clastogenic in mouse lymphoma cells (Tk locus) as well as in human Jurkat T-cells, as measured by use of the comet assay. Given that these results were obtained under exploratory conditions, we re-investigated the photo-genotoxicity of RP following a protocol consistent with current recommendations for photo-genotoxicity testing of drugs and chemicals. We tested RP in Chinese hamster ovary (CHO) cells in the dark (standard chromosome aberration test), under pre-irradiation (UVA irradiation of cells and subsequent treatment with RP) or simultaneous irradiation (irradiation of cells and RP together, standard photo-genotoxicity protocol) conditions. UVA irradiation was applied at 350 and 700 mJ/cm2 with the high UV dose targeted to produce a small increase in the incidence of structural chromosome aberrations (CA) in cells not treated with RP. RP was tested up to and above its limit of solubility in the culture medium (20-40 μg/mL). There was no overt cytotoxicity under dark or different irradiation conditions. Treatment of cells with RP in the dark, as well as treatment under pre- or simultaneous irradiation conditions failed to produce biologically significant increases in the incidence of CA, whereas the positive control substances 4-nitroquinolone and 8-methoxypsoralene produced significantly positive effects in the dark or under simultaneous irradiation, respectively. Overall, our results failed to confirm the reported positive photo-genotoxic effects, and suggest that they may have been due to the test conditions, i.e. high irradiation doses, high cytotoxicity or re-irradiation of photo-products. In conclusion, our data suggest that, under standard conditions for testing photo-genotoxicity, RP had no in vitro genotoxic or photo-genotoxic potential and is therefore unlikely to pose a local or systemic genotoxic or photo-genotoxic risk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号