首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cho SK  Chung HS  Ryu MY  Park MJ  Lee MM  Bahk YY  Kim J  Pai HS  Kim WT 《Plant physiology》2006,142(4):1664-1682
The U-box motif is a conserved domain found in the diverse isoforms of E3 ubiquitin ligase in eukaryotes. From water-stressed hot pepper (Capsicum annuum L. cv Pukang) plants, we isolated C. annuum putative U-box protein 1 (CaPUB1), which encodes a protein containing a single U-box motif in its N-terminal region. In vitro ubiquitination and site-directed mutagenesis assays revealed that CaPUB1 possessed E3 ubiquitin ligase activity and that the U-box motif was indeed essential for its enzyme activity. RNA gel-blot analysis showed that CaPUB1 mRNA was induced rapidly by a broad spectrum of abiotic stresses, including drought, high salinity, cold temperature, and mechanical wounding, but not in response to ethylene, abscisic acid, or a bacterial pathogen, suggesting its role in the early events in the abiotic-related defense response. Because transgenic work was extremely difficult in hot pepper, in this study we overexpressed CaPUB1 in Arabidopsis (Arabidopsis thaliana) to provide cellular information on the function of this gene in the development and plant responses to abiotic stresses. Transgenic Arabidopsis plants that constitutively expressed the CaPUB1 gene under the control of the cauliflower mosaic virus 35S promoter had markedly longer hypocotyls and roots and grew more rapidly than the wild type, leading to an early bolting phenotype. Microscopic analysis showed that 35S::CaPUB1 roots had increased numbers of small-sized cells, resulting in disordered, highly populated cell layers in the cortex, endodermis, and stele. In addition, CaPUB1-overexpressing plants displayed increased sensitivity to water stress and mild salinity. These results indicate that CaPUB1 is functional in Arabidopsis cells, thereby effectively altering cell and tissue growth and also the response to abiotic stresses. Comparative proteomic analysis showed that the level of RPN6 protein, a non-ATPase subunit of the 26S proteasome complex, was significantly reduced in 35SCaPUB1 seedlings as compared to the wild type. Pull-down and ubiquitination assays demonstrated that RPN6 interacted physically with CaPUB1 and was ubiquitinated in a CaPUB1-dependent manner in vitro. Although the physiological function of CaPUB1 is not yet clear, there are several possibilities for its involvement in a subset of physiological responses to counteract dehydration and high-salinity stresses in transgenic Arabidopsis seedlings.  相似文献   

2.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

3.
Leucine-rich repeat proteins (LRRs) function in a number of signal transduction pathways via protein–protein interactions. The gene encoding a small protein of pepper, CaLRR1 , is specifically induced upon pathogen challenge and treatment with pathogen-associated molecular patterns (PAMPs). We identified a pepper hypersensitive induced reaction (CaHIR1) protein that interacts with the LRR domain of the CaLRR1 protein using yeast two-hybrid screening. Ectopic expression of the pepper CaHIR1 gene induces cell death in tobacco and Arabidopsis, indicating that the CaHIR1 protein may be a positive regulator of HR-like cell death. Because transformation is very difficult in pepper plants, we over-expressed CaLRR1 and CaHIR1 in Arabidopsis to determine cellular functions of the two genes. The over-expression of the CaHIR1 gene, but not the CaLRR1 gene, in transgenic Arabidopsis confers disease resistance in response to Pseudomonas syringae infection, accompanied by the strong expression of PR genes, the accumulation of both salicylic acid and H2O2, and K+ efflux in plant cells. In Arabidopsis and tobacco plants over-expressing both CaHIR1 and CaLRR1 , the CaLRR1 protein suppresses not only CaHIR1 -induced cell death, but also PR gene expression elicited by CaHIR1 via its association with HIR protein. We propose that the CaLRR1 protein functions as a novel negative regulator of CaHIR1-mediated cell death responses in plants.  相似文献   

4.
Most of the proline-rich cell wall glycoprotein genes isolated from higher plants are preferentially expressed in the transmitting tissues of the flower organ. In conducting expressed sequence tag (EST) analysis, which was prepared from 5-day-old early roots of hot pepper (Capsicum annuum L. cv. Pukang), we identified a cDNA clone, pCaPRP1, encoding a putative cell wall proline-rich glycoprotein. CaPRP1 (Mr=28 kDa, pI=9.98) was most closely related to Nicotiana alata NaPRP4 (71%), while most distantly related to soybean PvPRP (37%). The predicted primary structure of CaPRP1 contains a putative N-terminal signal peptide, six repeats of the Lys-Pro-Pro tripeptide, four repeats of a five-amino acid sequence [Pro-(Ser/The)-Pro-Pro-Pro] and one potential N-glycosylation site (Asn-Asn-Ser). In contrast to most proline-rich cell wall glycoprotein genes, CaPRP1 was highly expressed in rapidly elongating very early roots and young leaves as well as developing flower tissues. Although the physiological function of CaPRP1 is not yet clear, there are several possibilities for its role in cell expansion and elongation during early development of hot pepper plants.  相似文献   

5.
Transient and long-term shortages of fresh water are major adverse environmental factors that cause dramatic reductions in crop production and distribution globally. In this study, we isolated a full-length CaSRP1 (Capsicum annuum stress-related protein 1) cDNA, which was rapidly induced by dehydration in hot pepper plants. The predicted CaSRP1 protein sequence exhibited significant amino acid identity to putative stress-related proteins and the small rubber particle protein (SRPP) found in rubber trees (Hevea brasiliensis). To study the cellular functions of CaSRP1, transgenic Arabidopsis plants (35S:CaSRP1) that constitutively expressed the CaSRP1 gene were constructed. Overexpression of CaSRP1 resulted in enhanced root and shoot growth and earlier bolting in the transgenic plants relative to wild-type plants. In addition, 35S:CaSRP1 overexpressors exhibited enhanced tolerance to drought stress as compared to the control plants. These results suggest that CaSRP1 plays dual functions as a positive factor for tissue growth and development and for drought-defensive responses. A possible cellular function of SRPP homologs in non-rubber-producing plants in relation to drought stress tolerance is discussed.  相似文献   

6.
7.
8.
Cho SK  Kim JE  Park JA  Eom TJ  Kim WT 《FEBS letters》2006,580(13):3136-3144
Xyloglucan endotransglucosylase/hydrolase (XTH) has been recognized as a cell wall-modifying enzyme, participating in the diverse physiological roles. From water-stressed hot pepper plants, we isolated three different cDNA clones (pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH homologs. RT-PCR analysis showed that three CaXTH mRNAs were concomitantly induced by a broad spectrum of abiotic stresses, including drought, high salinity and cold temperature, and in response to stress hormone ethylene, suggesting their role in the early events in the abiotic-related defense response. Transgenic Arabidopsis plants that constitutively expressed the CaXTH3 gene under the control of the CaMV 35S promoter exhibited abnormal leaf morphology; the transgenic leaves showed variable degrees of twisting and bending along the edges, resulting in a severely wrinkled leaf shape. Microscopic analysis showed that 35S-CaXTH3 leaves had increased numbers of small-sized cells, resulting in disordered, highly populated mesophyll cells in each dorsoventral layer, and appeared to contain a limited amount of starch. In addition, the 35S-CaXTH3 transgenic plants displayed markedly improved tolerance to severe water deficit, and to lesser extent to high salinity in comparison with the wild-type plants. These results indicate that CaXTH3 is functional in heterologous Arabidopsis cells, thereby effectively altering cell growth and also the response to abiotic stresses. Although the physiological function of CaXTHs is not yet clear, there are several possibilities for their involvement in a subset of physiological responses to counteract dehydration and high salinity stresses in transgenic Arabidopsis plants.  相似文献   

9.
Inositol 1,4,5-trisphosphate (InsP3) has been implicated in the early signaling events of plants linking gravity sensing to the initiation of the gravitropic response. However, at present, the contribution of the phosphoinositide signaling pathway in plant gravitropism is not well understood. To delineate the role of InsP3 in plant gravitropism, we generated Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme that specifically hydrolyzes InsP3. The transgenic plants show no significant differences in growth and life cycle compared to wild-type plants, although basal InsP3 levels are reduced by greater than 90% compared to wild-type plants. With gravistimulation, InsP3 levels in inflorescence stems of transgenic plants show no detectable change, whereas in wild-type plant inflorescences, InsP3 levels increase approximately 3-fold within the first 5 to 15 min of gravistimulation, preceding visible bending. Furthermore, gravitropic bending of the roots, hypocotyls, and inflorescence stems of the InsP 5-ptase transgenic plants is reduced by approximately 30% compared with the wild type. Additionally, the cold memory response of the transgenic plants is attenuated, indicating that InsP3 contributes to gravisignaling in the cold. The transgenic roots were shown to have altered calcium sensitivity in controlling gravitropic response, a reduction in basipetal indole-3-acetic acid transport, and a delay in the asymmetric auxin-induced beta-glucuronidase expression with gravistimulation as compared to the controls. The compromised gravitropic response in all the major axes of growth in the transgenic Arabidopsis plants reveals a universal role for InsP3 in the gravity signal transduction cascade of plants.  相似文献   

10.
Choi du S  Hwang BK 《The Plant cell》2011,23(2):823-842
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.  相似文献   

11.
12.
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.  相似文献   

13.
Plant receptor proteins are involved in the signaling networks required for defense against pathogens. The novel pepper pathogen-induced gene CaMRP1 was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). This gene is predicted to encode a membrane-located receptor-like protein that has an N-terminal signal peptide and a C-terminal transmembrane helix. A CaMRP1-GFP fusion protein localized primarily to the plasma membrane of plant cells. Strong and early induction of CaMRP1 expression occurred following exposure of pepper plants to Xcv, Colletotricum coccodes, methyl jasmonate (MeJA) and wounding stress. Virus-induced gene silencing (VIGS) of CaMRP1 in pepper conferred enhanced basal resistance to Xcv infection, accompanied by induction of genes encoding basic PR1 (CaBPR1), defensin (CaDEF1) and SAR8.2 (CaSAR82A). In contrast, CaMRP1 overexpression (OX) in transgenic Arabidopsis plants resulted in increased disease susceptibility to Hyaloperonospora parasitica infection. Arabidopsis plants overexpressing CaMRP1 exhibited insensitivity to MeJA by causing reduced expression of MeJA-responsive genes. Overexpression also resulted in tolerance to NaCl and during salt stress, the expression of several abscisic acid-responsive genes was induced. Together, these results suggest that pepper CaMRP1 may belong to a new subfamily of membrane-located receptor-like proteins that regulate disease susceptibility, MeJA-insensitivity and salt tolerance.  相似文献   

14.
We previously showed that NtCDPK1, a tobacco cal-cium-dependent protein kinase, interacts with and phosphorylates the Rpn3 regulatory subunit of the 26S proteasome, and that both NtCDPK1 and Rpn3 are mainly expressed in rapidly proliferating tissues, in-cluding shoot and root meristem. In this study, we ex-amined NtCDPK1 expression in roots using GUS ex-pression in transgenic Arabidopsis plants, and investi-gated its function in root development by generating transgenic tobacco plants carrying a sense NtCDPK1 transgene. GUS activity was first detected in roots two days after sowing. In later stages, strong GUS expres-sion was detected in the root meristem and elongation zone, as well as the initiation sites and branch points of lateral roots. Transgenic tobacco plants in which NtCDPK1 expression was suppressed were smaller, and their root development was abnormal, with reduced lateral root formation and less elongation. These re-sults suggest that NtCDPK1 plays a role in a signaling pathway regulating root development in tobacco.  相似文献   

15.
16.
Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this response is initiated by a cell wall integrity-sensing mechanism and dedicated signaling pathway rather than being an inevitable consequence of lost structural integrity. However, the existence of such a pathway in root tissue and its function in a broader developmental context have remained largely unknown. Here, we show that various types of cell wall stress rapidly reduce primary root elongation in Arabidopsis (Arabidopsis thaliana). This response depended on the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC). In agreement with the established ethylene signaling pathway in roots, auxin signaling and superoxide production are required downstream of ACC to reduce elongation. However, this cell wall stress response unexpectedly does not depend on the perception of ethylene. We show that the short-term effect of ACC on roots is partially independent of its conversion to ethylene or ethylene signaling and that this ACC-dependent pathway is also responsible for the rapid reduction of root elongation in response to pathogen-associated molecular patterns. This acute response to internal and external stress thus represents a novel, noncanonical signaling function of ACC.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号