首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
W Gibson  A I Marcy  J C Comolli    J Lee 《Journal of virology》1990,64(3):1241-1249
The 37-kilodalton (kDa) assembly protein of cytomegalovirus (strain Colburn) B capsids is shown to have a 40-kDa precursor. Pulse-chase radiolabeling experiments revealed that conversion of the precursor to the product was slow, requiring over 6 h for completion, and correlated with movement from the cytoplasmic to the nuclear fraction of Nonidet P-40-disrupted cells. Of these two proteins, only the 40-kDa precursor was synthesized in vitro from infected-cell RNA, consistent with its being the primary translation product. Amino acid sequence data obtained from CNBr-treated, high-performance liquid chromatography-purified assembly protein indicated that precursor translation begins at the first of two closely spaced potential initiation sites and that precursor maturation involves the loss of at least 32 amino acids from its carboxy-terminal end. It is also shown by immunological cross-reactivity and peptide similarity that three low-abundance B-capsid proteins (i.e., the 45-kilodalton [45K], 39K, and 38K proteins) are closely related to the assembly protein; the nature of this relatedness is discussed.  相似文献   

2.
Highly purified cell walls of Chromatium vinosum were isolated by differential centrifugation, with or without Triton X-100 extraction. The isolated material had a protein composition similar to that of cell walls obtained by sucrose density gradient centrifugation. Twenty-two proteins were reproducibly detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 42-kilodalton protein was shown to account for 65% of the total cell wall protein. The majority of cell wall proteins were solubilized in sodium dodecyl sulfate at room temperature; however, they existed as high-molecular-weight complexes unless heated to 45 degrees C or above. The cell wall contained one heat-modifiable protein which migrated with an apparent molecular weight of 37,400 when solubilized at 70 degrees C or below, but which migrated with an apparent molecular weight of 52,500 if solubilized at 100 degrees C. The electrophoretic mobility of three proteins was modified by 2-mercaptoethanol. The majority of C. vinosum cell wall proteins had isoelectric points between pH 4.5 and 5.5, and the 42-kilodalton protein focused at pH 4.9. No proteins were detected which were analogous to the lipoprotein or peptidoglycan-associated proteins of the Enterobacteriaceae. Nearest-neighbor analysis with a reducible, cross-linking reagent indicated that three proteins, including the 42-kilodalton protein, associated with themselves. Most of the cell wall proteins were partially accessible to proteases in both intact cells and isolated cell walls. Protease treatment of the whole cell or isolated cell wall digested approximately an 11,000-molecular-weight portion of the 42-kilodalton protein.  相似文献   

3.
The gene products of Gazdar murine sarcoma virus (Gz-MuSV) were identified by in vitro translation of Gz-MuSV virion RNA. An overlapping set of proteins with approximate molecular weights of 37,000 (37K), 33K, 24K, and 18K were synthesized from the transforming gene of Gz-MuSV, v-mosGz. In addition, Gz-MuSV-specific RNA directed the in vitro synthesis of a 62K gag gene protein and a 37.5K env gene-related product. The Gz-MuSV-specific in vitro translation products were compared with the in vitro translation products of M-MuSV 124, an independent isolate with a similar v-mos gene. This analysis showed that the 62K Gz-MuSV gag gene protein and the 37K, 33K, 24K, and 18K v-mosGz proteins were almost identical to the M-MuSV 124 62K (gag) and 37K, 33K, 24K, and 18K (v-mosMo) proteins that we previously identified and characterized. The 37.5K env gene product from Gz-MuSV does not have a correlate in the M-MuSV 124 translation products. These results were analyzed in the context of expectations based on similarities and differences in genetic organization of these two viral genomes.  相似文献   

4.
5.
The effect of temperature on the in vitro translation of control and heat-shock poly(A)-rich RNA, obtained from Chlamydomonas reinhardi cells, incubated for 2 h at 25 degrees C respectively, was studied using the wheat-germ translation system. Incubation of the cells at 42 degrees C induces the synthesis of RNAs coding for several heat-shock proteins, including a 22-kDa major polypeptide as well as several proteins of 45-94 kDa, as demonstrated by run-off translation of polyribosomes isolated from intact cells. However, the high-molecular-mass heat-shock proteins are poorly translated in the wheat-germ system. The poly(A)-rich RNA coding for the 22-kDa heat-induced polypeptide has an apparent sedimentation coefficient higher than that expected from the molecular mass of its translation product, and was preferentially translated in vitro at temperatures above 31 degrees C as compared with pre-existing RNAs. Raising the temperature of translation, slightly inhibited (10%) the runoff translation of polyribosomes isolated from intact cells. However, when initiation was carried out in vitro for a short time at increasing temperatures and translation continued at 25 degrees C in the presence of aurintricarboxylic acid, the 22-kDa heat-shock polypeptides was preferentially translated. Aurintricarboxylic acid did not significantly inhibit incorporation of [35S]methionine when added to polyribosomes isolated from control or heat-shocked cells. From the above data we conclude that the translation of the 22-kDa heat-shock protein is controlled in vitro at the initiation level.  相似文献   

6.
In a reticulocyte lysate, turnip yellow mosaic virus genomic RNA directs the synthesis of two proteins with molecular weights of 150,000 (150K) and 195K. We present evidence that the larger protein is processed in vitro, after its completion, in at least three fragments. The NH2-terminal fragment (82K) and the COOH-terminal fragment (78K) have been well characterized by different methods. The fact that the 150K protein is not cleaved in vitro, although it contains the regions that are processed in the 195K protein, could be of fundamental biological significance for the expression of the viral genes: a single polypeptide chain could be processed in several ways, leading to different peptides with distinct biological activities.  相似文献   

7.
We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms.  相似文献   

8.
9.
The human pim-1 gene was recently identified as a new putative oncogene located on chromosome 6p21, a region showing karyotypic abnormalities in particular leukemias. In the present work we characterized the pim protein product. In vitro translation of positively selected poly(A)+ mRNA indicates that this gene encodes a 33-kilodalton protein. Anti-pim antibodies were raised against a fused TrpE-pim protein induced in a bacterial expression vector. This antibody immunoprecipitated a 33-kilodalton protein from in vivo [35S]methionine-labeled K562 and KCl myelogenous origin cell lines. This protein was localized to the cytoplasm, and in vivo labeling as well as in vitro kinase assay suggests that it is a phosphoprotein with tyrosine kinase activity. This was further confirmed by performing autophosphorylation directly on a p33pim-containing gel band cut out after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results imply that the tyrosine kinase activity of pim can be recovered after boiling the pim-1 protein in sample buffer: a feature not described yet for this class of protein. These results suggest that pim-1 is a new member of the subgroup of oncogenes encoding tyrosine kinases.  相似文献   

10.
HeLa cells synthesize a particular heat shock protein that is induced only by heat shock at 42 degrees C, and not at 45 degrees C or by other stresses that induce major heat shock proteins (Hatayama et al. (1986) Biochem. Biophys. Res. Commun. 137, 957-963). We further characterized the 42 degrees C-specific protein. This protein was induced in mouse FM 3A cells as well as in human HeLa cells. In both cell lines, the protein was resolved into two spots, a basic polypeptide and an acidc one. The mRNA of the protein was induced during the incubation of these cells at 42 degrees C, and the in vitro translation product of mRNA corresponded to the basic, not to the acidic, polypeptide. During the chase period for cells that were labeled with [35S]-methionine, the basic polypeptide of the protein decreased, and the acidic one increased, indicating that the protein was synthesized as the basic polypeptide and then somehow modified to become the acidic one. The 42 degrees C-specific protein was found only in the cytosol fraction, and not in the nuclear or other particulate fractions, in both HeLa and FM 3A cells. The results suggested that the 42 degrees C-specific protein may have some function in the cytoplasm of mammalian cells during mild heat shock.  相似文献   

11.
Expression of the hepatitis B virus core gene in vitro and in vivo.   总被引:21,自引:14,他引:7       下载免费PDF全文
T Weimer  J Salfeld    H Will 《Journal of virology》1987,61(10):3109-3113
  相似文献   

12.
Astrocytes in culture synthesize a 140-kilodalton (140-kD) protein (protein 140) that is released into the medium on incubation with phosphatidylinositol phospholipase C. This molecule therefore belongs to the class of proteins anchored to the external side of the cell membrane through a glycolipid moiety. Protein 140 is present in astrocyte cultures derived from two different regions of the brain and is not expressed by neurons in vitro. It differs from neuronal cell adhesion molecule 120 or 140 and is probably identical to a protein of 140 kD present in C6 glioma cells.  相似文献   

13.
In poliovirus-infected HeLa cells, poliovirus RNA is translated at times when cellular mRNA translation is strongly inhibited. It is thought that this translational control mechanism is mediated by inactivation of a cap-binding protein complex (comprising polypeptides of 24 [24-kilodalton cap-binding protein], 50, and approximately 220 kilodaltons). This complex can restore the translation of capped mRNAs in extracts from poliovirus-infected cells. We have previously shown that the virally induced defect prevents interaction between cap recognition factors and mRNA. Here, we show that the cap-binding protein complex (and not the 24-kilodalton cap-binding protein) has activity that restores the cap-specific mRNA-protein interaction when added to initiation factors from poliovirus-infected cells. Thus, the activity that restores the cap-specific mRNA-protein interaction and that which restores the translation of capped mRNAs in extracts from poliovirus-infected cells, copurify. The results also indicate, by an alternative assay, that the cap-binding protein complex is the only factor inactivated by poliovirus. We also purified cap-binding proteins from uninfected and poliovirus-infected HeLa cells. By various criteria, the 24-kilodalton cap-binding protein is not structurally modified as a result of infection. However, the 220-kilodalton polypeptide of the cap-binding protein complex is apparently cleaved by a putative viral (or induced) protease. By in vivo labeling and m7GDP affinity chromatography, we isolated a modified cap-binding protein complex from poliovirus-infected cells, containing proteolytic cleavage fragments of the 220-kilodalton polypeptide.  相似文献   

14.
The flavoenzyme dihydroorotate dehydrogenase A from Lactococcus lactis is a homodimeric protein of 311 residues/subunit, and the two active sites are positioned at a distance from the dimer interface. To promote formation of the monomeric form of the enzyme, we changed the residues involved in formation of two salt bridges formed between the residues Glu206 of the one polypeptide and Lys296 of the other polypeptide. The mutant enzymes formed inactive precipitates when cells were grown at 37 degrees C, but remained soluble and active when cells were grown at 25 degrees C. The salt bridges were not needed for activity, because the mutant enzymes in which one of the residues was converted to an alanine (E206A or K296A) retained almost full activity. The mutant enzymes in which the charge of one of the residues of the salt bridge was inverted (i.e., E206K or K296E) were severely impaired. The double mutant E206K-K296E, which has the possibility of forming salt bridges in the opposite orientation of the wild type, was fully active in concentrated solutions, but dissociated into inactive monomers upon dilution. The K(D) for the dimer to monomer dissociation reaction was 12 microM, and dimer formation was favored by the product, orotate, or by high ionic strength, indicating that the hydrophobic interactions are important for the subunit contacts. Wild-type dihydroorotate dehydrogenase A was similarly found to dissociate into inactive monomers, but with a K(D) for dissociation equal to 0.12 microM. These results imply that the dimeric state is necessary for activity of the enzyme.  相似文献   

15.
The wide range of functions attributed to GTP-binding regulatory proteins (G proteins) is reflected in the structural diversity which exists among the alpha, beta, and gamma subunits of G proteins. Recently two cDNA clones encoding beta subunits, beta 1 and beta 2, were isolated from bovine and human cDNA libraries. We report here that the beta 2 gene encodes the 35-kilodalton (kDa) component of the beta 35/beta 36 subunit of G proteins and that the beta 1 gene encodes the 36-kilodalton component. The in vitro translation product of the beta 2 cDNA co-migrates with the 35-kDa beta subunit (beta 35), while the in vitro product of the beta 1 cDNA co-migrates with the 36-kDa beta subunit (beta 36) on denaturing polyacrylamide gels. In addition, antisera generated against synthetic beta 2 peptides bind specifically to the beta 35 component of isolated G proteins and to a 35-kDa protein in myeloid cell membranes. Our results suggest that the two beta subunits could serve distinct functions, as they are derived from separate genes which have been highly conserved in evolution.  相似文献   

16.
The steroid hormone antheridiol regulates sexual development in the fungus Achlya ambisexualis. Analyses of in vivo-labeled proteins from hormone-treated cells revealed that one of the characteristic antheridiol-induced proteins appeared to be very similar to the Achyla 85-kilodalton (kDa) heat shock protein. Analysis of in vitro translation products of RNA isolated from control, heat-shocked, or hormone-treated cells demonstrated an increased accumulation of mRNA encoding a similar 85-kDa protein in both the heat-shocked and hormone-treated cells. Northern (RNA) blot analyses with a Drosophila melanogaster hsp83 probe indicated that a mRNA species of approximately 2.8 kilobases was substantially enriched in both heat-shocked and hormone-treated cells. The monoclonal antibody AC88, which recognizes the non-hormone-binding component of the Achyla steroid receptor, cross-reacted with Achlya hsp85 in cytosols from heat-shocked cells. This monoclonal antibody also recognized both the hormone-induced and heat shock-induced 85-kDa in vitro translation products. Taken together, these data suggest that similar or identical 85-kDa proteins are independently regulated by the steroid hormone antheridiol and by heat shock and that this protein is part of the Achyla steroid receptor complex. Our results demonstrate that the association of hsp90 family proteins with steroid receptors observed in mammals and birds extends also to the eucaryotic microbes and suggest that this association may have evolved early in steroid-responsive systems.  相似文献   

17.
K88E mutation within rpsL, which encodes the S12 ribosomal protein, enhanced the protein synthetic activity of Streptomyces coelicolor during the late growth phase, resulting in overproduction of the deep blue-pigmented polyketide antibiotic actinorhodin. In vitro cross-mixing experiments using the ribosomal and S-150 fractions derived from wild-type and K88E mutant strains suggested that one or more translation factors are enriched in the mutant's S-150 fraction, while Western analysis using antibodies against various translation factors revealed ribosome recycling factor (RRF) to be one of the enriched mediators. RRF purified from overexpressing cells stimulated mRNA-directed green fluorescent protein (GFP) synthesis in an in vitro protein synthesis system. GFP synthesis rates were complemented by RRF addition into wild-type cell's S-150 fraction, eliminating the difference between wild-type and mutant S-150 fractions. The frr gene encoding RRF was found to be transcribed from two distinct start points (frrp1 and frrp2), and increased expression from frrp1 could account for the elevated level of RRF in the K88E mutant during the late growth phase. Moreover, introduction of a plasmid harbouring a high copy number of frr gene into wild-type S. coelicolor induced remarkable overproduction of antibiotic, demonstrating that the increased levels of RRF caused by the K88E mutation is responsible for an aberrant stationary-phase event: overproduction of antibiotic.  相似文献   

18.
The temperature-sensitive Chinese hamster ovary cell mutant tsH1, has been shown previously to contain a temperature-sensitive leucyl-tRNA synthetase. At the non-permissive temperature of 40 degrees C cytosolic protein synthesis is rapidly inhibited. The protein synthesis which continues at 40 degrees C appears to be mitochondrial, since: (a) whole-cell protein synthesis at the permissive temperature of 34 degrees C is not inhibied by tevenel, the sulfamoyl analogue of chloramphenicol and a specific inhibitor of mitochondrial protein synthesis; however, whole-cell protein synthesis at 40 degrees C is inhibited by tevenel, (b) Protein synthesis by isolated mitochondria from tsH1 cells is not significantly inhibited at 40 degrees C. (c) At 40 degrees C [14C]leucine is incorporated predominantly into the mitochondrial fraction of tsH1 cells. (d) The incorporation of [14C]leucine at 40 degrees C into mitochondrial proteins of tsH1 cells is inh-bited by tevenel but not by cycloheximide. These results suggest that the mitochondria of tsH1 cells contain a leucyl-tRNA synthetase which is different from the cytosolic enzyme. The inhibition of cytosolic, but not of mitochondrial protein synthesis in tsH1 cells at 40 degrees C allows the selective labelling of mitochondrial translation products in the absence of inhibitors. The mitochondrial translation products labelled in tsH1 cells at 40 degrees C and at 34 degrees C in the presence of cycloheximide have been compared by sodium dodecylsulphate-polyacrylamide gel electrophoresis. Both conditions of labelling give similar profiles. The mitochondrial translation products are resolved into two components, one with an apparent molecular weight range from 40,000 to 20,000 and a second with an apparent molecular weight range from 20,000 to 10,000.  相似文献   

19.
L H Soe  C K Shieh  S C Baker  M F Chang    M M Lai 《Journal of virology》1987,61(12):3968-3976
A 28-kilodalton protein has been suggested to be the amino-terminal protein cleavage product of the putative coronavirus RNA polymerase (gene A) (M.R. Denison and S. Perlman, Virology 157:565-568, 1987). To elucidate the structure and mechanism of synthesis of this protein, the nucleotide sequence of the 5' 2.0 kilobases of the coronavirus mouse hepatitis virus strain JHM genome was determined. This sequence contains a single, long open reading frame and predicts a highly basic amino-terminal region. Cell-free translation of RNAs transcribed in vitro from DNAs containing gene A sequences in pT7 vectors yielded proteins initiated from the 5'-most optimal initiation codon at position 215 from the 5' end of the genome. The sequence preceding this initiation codon predicts the presence of a stable hairpin loop structure. The presence of an RNA secondary structure at the 5' end of the RNA genome is supported by the observation that gene A sequences were more efficiently translated in vitro when upstream noncoding sequences were removed. By comparing the translation products of virion genomic RNA and in vitro transcribed RNAs, we established that our clones encompassing the 5'-end mouse hepatitis virus genomic RNA encode the 28-kilodalton N-terminal cleavage product of the gene A protein. Possible cleavage sites for this protein are proposed.  相似文献   

20.
There is an increased synthesis of proteins in the molecular weight region of 100,000 72,000-74,000 and 37,000 two hours after treatment of HeLa cells for 10 min at 45 degrees C. In vitro translation, using a rabbit reticulocyte cell-free protein synthesising system, of HeLa cell cytoplasmic RNA shows that the prominent 72,000-74,000 Mr heat shock protein band comprises seven polypeptide species (namely alpha d beta gamma delta epsilon zeta) and these polypeptides are directly encoded by both polyadenylated and nonpolyadenylated mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号